
EDAF40: Lab 4
The interactive Sudoku solver, ver. 1.3

Adrian Roth and Jacek Malec

May 17, 2019

The goal of this lab is to figure out how to write an interactive Sudoku puzzle
solver in Haskell. In the process we will learn about monadic computations and
the bind function together with the somewhat tricky IO concept in Haskell. All
functions written in this lab are expected to guide you towards one possible way
of solving Assignment 2F, though there are definitely many other approaches. If
you find an approach which you think is more logical and easier to understand
than our version, we would be happy to hear about it!

Part 1: Reusing earlier concepts
The struggles you went through in the first assignment will now pay off as
you will reuse the concepts and your understanding of peers and squares. At
EDAF40 Lab material menu on the course web page you can find and download a
http://fileadmin.cs.lth.se/cs/Education/EDAN40/classes/SolveSudoku.
hs file containing an implementation of these structures and some additional
stuff such as the parseGrid function. The parseGrid function is not yet work-
ing since assign function is not implemented yet: you will think more about it
later today.

First consider the type Grid that represents a partially filled puzzle (the
one you have been verifying in Assignment 1F or the one you will be solving in
Assignment 2F). Why is it defined this way?

Grid :: [(String, [Int])]

We shall begin by implementing a bunch of functions which can be used in the
later implementations.

Task 1: Implement the function:
map2 :: (a -> c, b -> d) -> (a, b) -> (c, d).

Task 2: Implement the function:
mapIf :: (a -> a) -> (a -> Bool) -> [a] -> [a].

1

http://fileadmin.cs.lth.se/cs/Education/EDAN40/classes/SolveSudoku.hs
http://fileadmin.cs.lth.se/cs/Education/EDAN40/classes/SolveSudoku.hs


Task 3: Implement the function:
maybeOr :: Maybe a -> Maybe a -> Maybe a.

Task 4: Implement the function:
firstJust :: [Maybe a] -> Maybe a.

Task 5: Implement the function:
lookupList :: Eq a => a -> [(a, [b])] -> [b].

These are helper functions that will take care of possible (partial) solutions
of a Sudoku puzzle.

Part 2: Binding your knowledge with bind
The use of the bind function will be a required part of the solver in Assignment
2F and therefore we will cover it more thoroughly in this part of the lab. We
will use the bind function on the Maybe data type and therefore we can write a
specific implementation of it:
maybeBind :: Maybe a -> (a -> Maybe b) -> Maybe b
As seen in the type definition this function takes a Maybe value as its first ar-
gument, while the second argument is a function. This function takes a type
a and after manipulation and possible conversion returns the type b inside a
Maybe context. You remember from the last assignment that a Maybe type is
often used when there is a possibility of error. We want to use Maybe in the
same manner here where the error is an unsolvable Sudoku and we can phrase
our usage of the bind function as follows: we want to apply a function that will
fail on a value which might already have failed.

Let us code an example. In this example we want to replace multiple items
in a list and we also want the result to be valid only if each replacement re-
places an element.

Task 1: Implement the function:
maybeBind :: Maybe a -> (a -> Maybe b) -> Maybe b
Hint: If the first argument is Nothing the function should return Nothing oth-
erwise it should return the result of the second parameter function applied on
the value inside the first parameters Maybe context.

Task 2: Copy the function:

tryReplace :: Eq a => a -> a -> [a] -> Maybe [a]
tryReplace _ _ [] = Nothing
tryReplace y y’ (x:xs)

| x == y = Just (y’:xs)
| otherwise = fmap (x:) $ tryReplace y y’ xs

How does it work? What does the fmap function do?

2



Now we want to successively replace different characters in a list multiple
times. First, let us say we have a list:
[1,2,3]
We want to, in the following order, replace:

• 1 with 3

• 3 with 2

• 2 with 1

This should in the end return a Just [1,2,3].
A second sequence:

• 1 with 3

• 1 with 2

• 2 with 1

should instead return Nothing since there is an invalid replacement.
To implement the first replacement sequence we could use case statements and
get:

doIt :: Maybe [Int]
doIt = case tryReplace 1 3 [1,2,3] of

Nothing -> Nothing
Just list1 -> case tryReplace 3 2 list1 of

Nothing -> Nothing
Just list2 -> tryReplace 2 1 list2

However, this is neither clear nor generic for use with larger sequences. As you
might have guessed, we can instead use the bind function (in infix form here)
to get:

doIt :: Maybe [Int]
doIt = Just [1,2,3] ‘maybeBind‘ tryReplace 1 3 ‘maybeBind‘

tryReplace 3 2 ‘maybeBind‘ tryReplace 2 1

This implementation can be much easier expanded into recursion and folding,
which is why the bind function is very useful in this case. Try writing the failing
sequence and make up two sequences of your own to check if they are valid.

When you are familiar with the maybeBind function you can now, if you want,
use the real bind function instead,

(>>=) :: Monad m => m a -> (a -> m b) -> m b}.

This is a generalised version which works for all data types which are instances
of the typeclass Monad. As you know, Maybe is an instance of the Monad
typeclass which means you can directly use it for the following problems of this
assignment. It might be useful to be aware of the flipped version of the bind
function as well:

(=<<) :: Monad m => (a -> m b) -> m a -> m b

3



Part 3: The assign function
The goal is to implement a function which assigns a value to a square and
propagates elimination of that value to all the peers of the square. For each
elimination of a value from a square, where we might run into a Sudoku which
is unsolvable, we will consider three different special cases:

• After elimination there are no more possible values to insert in this square.

• The elimination does nothing since the value has already been eliminated
from this square.

• There is only a single possible value left to put in this square.

These cases will be taken care of in a help function to the assign function,
called eliminate. But first you can implement two other help functions.

Task 1: Implement the functions:
setValue, eliminateValue :: Int -> String -> Grid -> Grid.
The first function sets an Int value to a square (String) in the Grid and the
eliminateValue does the same for elimination.
Hint: Use the functions mapIf and map2 you have prevously implemented.

Task 2: Implement the function:
eliminate :: Int -> String -> Grid -> Maybe Grid
which considers the special cases mentioned above to try and eliminate a value
from a square. If unsuccessful it should return the Maybe value for failure.
Hint: Use guards and the where syntax together with some of the previously
implemented functions.

Task 3: Implement the function:
assign :: Int -> String -> Grid -> Maybe Grid.
Hint: Start by using a help function assign’ for recursion of the peers in the
elimination of a value together with the bind function.

Task 4: Now try to parse a Sudoku with the parseGrid function. What
remains and how can you find a solution to this remaining Grid?

Part 4: Solving the puzzle
The remaining grid, after the parsing, will be solved simply through trying every
possible combination and finding the first one that works. As a start we can
write a help function
solveSudoku’ :: [String] -> Grid -> Maybe Grid.
This function has a list of squares as first argument which it can go through
recursively. For each recursive step it will in turn try to assign the values which
are still possible to insert into the square (found in the Grid argument). If

4



assigning the value is successful continue to the next square, one step deeper in
the recursion. Then if none of the possible values to put in the square are valid
according to the assign function returns up one step and continues with the
next possible value for the last square.
Might sound tricky but if bind and map are used together with the implemented
functions assign, firstJust, and lookupList you can write one beautiful
recursion, where the lazy evaluation of Haskell will do the rest.
Now use this function together with the parseGrid to finally write the function
solveSudoku :: Grid -> Maybe Grid and test whether it works as expected.

Part 5: IO
In this part we will put the process of reading in a Sudoku, verifying it, support-
ing the user in solving it bit by bit, or completely solving it in one go, into one
nice function call. The structure might resemble the one you remember from
some early lecture:

interactionloop = do
writesomething
readsomething
dosomeprocessing
if finished then saygoodbye

else interactionloop

where readsomething will take in the user command and, depending on it, will
dispatch the processing accordingly (possibly using recursion as well to keep the
solving process continue).

More help will be available during the lab.

5


