
EDAF40: Lab 3
Building your own Sudoku puzzle, ver. 1.0

Adrian Roth and Jacek Malec

April 15, 2019

The goal of this lab is to continue on the Sudoku board (see labs 1 and 2) and,
in addition, work with I/O so that you can automatize some functionality, in
particular related to testing. Remember that all functions written in this lab
form one possible way of solving Assignment 1, but there are definitely many
other approaches. If you find an approach which you think is more logical and
easier to understand than our version, we would be happy to hear about it!

Communicating with the World Outside
In lab 2 you have implemented

verifySudoku :: Board -> Bool

that would check whether a given Sudoku board is valid, either just checking
for conflicts or, in the second step, also for blocking situations. (Can you tell
what type is Board actually?

Today we shall let your program read Sudoku board(s) from some input
stream (usually a file) and inform the user which boards were OK and which
were not.

Consider the following piece of code (should be available from the lab web
page as Main.hs):

module Main where

import Sudoku

bool :: a -> a -> Bool -> a
bool x _ False = x
bool _ y True = y

boolSum :: [Bool] -> Int
boolSum = sum . map (bool 0 1)

prep, prep’ :: String -> [String]

1



prep’ [] = []
prep’ s = take 81 s : prep’ (drop 81 s)

prep = prep’ . filter (not . flip elem "\n=")

files :: [String]
files = ["easy50.txt", "inconsistent20.txt"]

main :: IO ()
main =

mapM_ (\s -> do
sGrids <- readFile s
let grids = prep sGrids
let verified = map verifySudoku grids
--print verified
let n = boolSum verified
putStrLn $

s ++": "++ show n ++"/"++ show (length grids) ++" consistent"
) files

(BTW, you have probably already seen it.)
Questions:

1. How should the file with your verifySudoku be named, alternatively, what
do you need to modify in the above code?

2. What does function boolSum do?

3. What does function prep do?

4. What does function mapM_ do (look it up in the documentation)?

Task 1. Make sure that your Sudoku verifier works with the input files
provided. Use the above Main.hs or your own one.

Task 2. Inform the user about the verification success, or the kind of conflict
detected, if any, for each analyzed board.

Task 3. Visualize on the screen the place of detected conflict in case when
verification was negative: mark the dubious cell somehow and print out the
board in a legible way.

Task 4. (Optional) Prepare for an interactive determination of the Sudoku
size, so that your program can verify Sudoku of the sizes 4x9, 9x9 (and maybe
16x16: how would you code the subsequent digits?) where size is given as a
parameter.

2


