
EDAF40: Lab 2
Building your own Sudoku puzzle, ver. 1.2

Adrian Roth and Jacek Malec

April 12, 2019

The goal of this lab is to continue on the Sudoku board and, in addition, work
with Hlint and the algebraic data structure Maybe. Remember that all functions
written in this lab form one possible way of solving Assignment 1, but there are
definitely many other approaches. If you find an approach which you think is
more logical and easier to understand than our version, we would be happy to
hear about it!

Preparation Part: Sudoku problem
To make a smooth implementation of a Sudoku in Haskell one can use the
concepts squares, units and peers. Squares have already been introduced to-
gether with the square strings in the previous lab. From the rules of Sudoku we
know that each square has three units, one row unit, one column unit and one
box unit. For example the square A1 has the row unit A, column unit 1 and
box unit top left in a 4x4 board. Or with the square strings the units of A1 are
[["A1","A2","A3","A4"],["A1,"B1","C1","D1"], ["A1","A2","B1","B2"]]. At
last the peers of square A1 is the units without duplicates and itself, ["A2",
"A3","A4","B1","C1","D1","B2"]. The peers of each square will be very useful
in the implementation of a Sudoku verifier and solver.

The next goal is to make a list of tuples where each tuple is a combination
of a square string and a list of its peers, peers :: [(String, [String])],
which we will attempt in smaller steps.

Task 1: Calculate a variable unitList :: [[String]] of all the possible
units (all rows, all cols and all boxes concatenated).
Hint: Use the cross function and list comprehensions.

Task 2: Write a function filterUnitList which takes a square String as
input and use the unitList to return the three units which the square belongs
to.
Hint: Use the filter and containsElem functions.

1



Challenge: Write this function in a point free style.

Task 3: Calculate the variable units which is a list of tuples where each tuple
is combination of a square string and its corresponding three units, [(String,
[[String]])].
Hint: Use the filterUnitList function together with either map and lambda
function or list comprehension.

Task 4: Write function foldList :: [[a]] -> [a] which takes a list of
lists and concatenates all sub lists into a single list.
Challenge: Write this function in a point free style.

Task 5: Write function removeDuplicates which takes a list and removes
all duplicates in that list, duh.
Hint: Use the containsElem function.
Challenge: Write this function in a point free style.

Task 6: Write function delete :: Eq a => a -> [a] -> [a] which removes
the first occurrence of the first parameter in the second list parameter.

Task 7: Calculate the variable peers as presented above, remember that the
square string itself is not its own peer.
Hint: Use the previous three implemented functions and the units variable; the
implementation can look similar to the implementation of the units variable.

Part 1: linting your code (optional)
Note: Unfortunately, hlint is not (yet) available on LTH lab computers, mean-
ing that this part would need to be done on your own machines, where you can
install hlint without problems. Sorry for this miss. Jacek

As written in the wikipedia article on lint (https://en.wikipedia.org/
wiki/Lint_(software)) a linter is a tool which can locate both syntax and
stylistic errors in code. The hlint tool is adapted for Haskell as you might
have guessed and the usage is:
hlint Sudoku.hs,
or whichever filename you use. Even though your program is working, hlint
will give you tips and tricks for how to do “nice” programming in Haskell. As
seen in the instructions for Assignment 1 is it assumed and strongly encouraged
that you refine your code using this tool prior to submission.

After the linting you can probably feel your refactoring momentum and we
should definitly not slow down. We continue by realising that there is a Pre-
lude function called elem which does exactly the same thing as containsElem.

2

https://en.wikipedia.org/wiki/Lint_(software)
https://en.wikipedia.org/wiki/Lint_(software)


Why not switch and remove containsElem. Wait a minute, there is a Prelude
function that performs exactly what foldList does as well, find and replace.

The next thing we are concerned about is that the instructions for Assign-
ment 1 says that we are only allowed to use prelude functions. Now most of
you have used the Data.Char function digitToInt which means that you now
should implement this function yourself. When you are done with that do the
same for all other non prelude functions you might have used in your code so
far.
Hint: Remove all import statements and try to compile or load your code. The
errors will show which functions you have used that are not included in Prelude.

Part 2: The Maybe data type
The Maybe data type is commonly used in Haskell when a function needs
to handle possible error situations or exceptions. It can either have the value
Just a where a is any type or Nothing (typically something has gone wrong if
a Maybe type has the value Nothing).

Task 1: Check out the lookup function. Look at its type and discuss what it
does and for which inputs it returns Nothing.

Task 2: Write a function
fromMaybe :: a -> Maybe a -> a
where the Maybe value is returned if it is Just and the first parameter otherwise.

Task 3: Write a function
getPeers :: String -> [String]
which returns the peers of the first parameter square string using the peers vari-
able.
Hint: Use the functions lookup and fromMaybe.
Challenge: Write this function in a point free style.

Task 4: Write a function
justifyList :: [Maybe a] -> [a]
which takes a list of Maybe data type objects and outputs a list of the Just
element values (without the constructor Just).

Task 5: Write a function
lookups :: Eq a => [a] -> [(a, b)] -> [b]
which is similar to the lookup function but takes a list of input values.
Hint: Use the functions lookup and justifyList.
Challenge: Write this function with only one point (one parameter).
Flipping Challenge: Write this function in point free style.

3



Part 3: Sudoku Verifier, simple conflicts
In this part we will focus on the first problem of verifying a Sudoku by only
considering the non empty squares. If a filled square has the same value as any
of its peer squares the Sudoku is not consistent and the verifySudoku function
should return False.

Task 1: Write a function
validSquare :: (String, Int) -> [(String, Int)] -> Bool
which checks if a single square tuple is valid in a Sudoku board.
Hint: If the value of a square is zero we currently consider it consistent and
otherwise use the functions elem, lookups and getPeers to see if the value is
consistent.

Task 2: Write a function validBoard which checks if all the squares in a
board are valid.

Task 3: Write the greatest, and possibly shortest, function verifySudoku us-
ing appropriate functions previously implemented.

Task 4: Test your verifier with both consistent and inconsistent input data.
Maybe write some test variables inside your source code.

Part 4: Sudoku verifier, blocking conflicts
At last we will consider the blocking conflicts introduced in Assignment 1 which
might occur in a Sudoku. To find the blocking we need to now instead of the
squares look at each unit and see if a unit is valid. As you remember a unit
can either be a row, column or box where each square inside the unit is either
empty or filled with a value. Now to check if there exists a blocking situation
we will first calculate all the values which can be filled into an empty square
without any conflict to the squares peers. We do this for all empty squares.
Secondly, each unit will be checked for blocking in the following manner, where
the squares of the unit are considered:

• For the filled squares there is a maximum of one square with each value
in a unit.

• For all squares in a unit it is checked that every possible square value
[1..4] for 4x4 or [1..9] for 9x9 can either be inserted into at least one
of the empty squares or is already existing in the filled squares.

Task 1: Write a function reduceList which from two input lists removes oc-
currences of elements in the second list from the first list.

Task 2: Revisit the function validSquare which will now be rewritten to

4



validSquareNumbers :: (String,Int) -> [(String,Int)] -> (String,[Int])

This function returns a tuple where the second part of the tuple is a list of val-
ues which can be inserted in that square. For a filled square (sq, v) (v is not
equal to zero) either return a list with only that value ((sq, [v])) or an empty
list ((sq, [])) if the filled square is invalid as implemented in Part 3 or this lab.

Task 3: Change the function validBoard to validBoardNumbers which maps
the validSquareNumbers function onto the full board.

Task 4: Write a function
validUnit :: [String] -> [(String, [Int])] -> Bool
which checks if a unit is valid. Here it is important to remember the second
point in the list above so read it until you find a reasonable explanation of how
to proceed and try that. If it does not work try a different interpretation of it.
The information is there even though it is not seen at first glance.
Hint: The functions and, elem, concat, lookups can be used for this.

Task 5: Write a function validUnits which checks if all units in your variable
unitList are valid.

Task 6: Change in verifySudoku to use validUnits instead of validBoard.

5


