
Class 2: Types and Classes∗, v1.4

Jacek Malec (but see Introduction)

November 23, 2015

1 Introduction

This document is a derivative of many sources, most notably (in no particular
order):

1. “Haskell” on WikiBooks: http://en.wikibooks.org/wiki/Haskell;

2. Bryan O’Sullivan, John Goerzen and Don Stewart, “Real World Haskell”,
O’Reilly, 2009, also: http://book.realworldhaskell.org;

3. Simon Thompson, “The Craft of Functional Programming”, 2nd ed., (for-
mally our course book), Addison-Wesley, 1999;

4. Manuel M. T. Chakravarty, course materials COMP1011 at University of
New South Wales;

5. Materials of TDA555 from Chalmers,
http://www.cse.chalmers.se/edu/course/TDA555/;

6. Course material from Lennart Ohlsson.

NOTE: Recent changes in the text below include addition of the type deriva-
tion exercise, taken from previous exams.

2 Exercises

2.1 Propositional Logic (TDA555)

A proposition is a boolean formula of one of the following forms:

• a variable name (a string)

• p ∧ q (and)

• p ∨ q (or)

• ¬p (not)

where p and q are propositions. For example, p ∨ ¬p is a proposition.

∗Intended for EDAN40 course, after the lecture on types.

1

1. Design a data type Proposition to represent propositions.

2. Define a function

vars :: Proposition -> [String]

which returns a list of the variables in a proposition. Make sure each
variable appears only once in the list you return.

Suppose you are given a list of variable names and their values, of type
Bool, for example, [("p",True),("q",False)]. Define a function

truthValue :: Proposition -> [(String,Bool)] -> Bool

which determines whether the proposition is true when the variables have
the values given.

3. Define a function

tautology :: Proposition -> Bool

which returns true if the proposition holds for all values of the variables
appearing in it.

2.2 File Systems (TDA555)

A file either contains data or is a directory. A directory contains other files
(which may themselves be directories) along with a name for each one.

1. Design a data type to represent the contents of a directory. Ignore the
contents of files: you are just trying to represent file names and the way
they are organised into directories here.

2. Define a function to search for a given file name in a directory. You should
return a path leading to a file with the given name. Thus if your directory
contains a, b, and c, and b is a directory containing x and y, then searching
for x should produce b/x.

2.3 Sets (TDA555)

1. Design a datastructure for sets . I.e. there should be a type Set a, and a
number of functions for creating, combining, and investigating sets. There
should at least be a function to create an empty set, add an element to a
set, take the union of two sets, remove an element from the set, and check
if an element is in the set.

2. Now, implement the Set datastructure. You may use lists internally.

3. Redo the above exercise, but now use sorted lists of unique elements as
your internal representation. Set union becomes more efficient that way.

2

2.4 Ordering (Thompson)

Complete the following instance declarations:

instance (Ord a, Ord b) => Ord (a,b) where ...

instance Ord b => Ord [b] where ...

where pairs and lists should be ordered lexicographically, like the words in dic-
tionary.

2.5 ListNatural (lecture)

Natural numbers may correspond to lists of nothing!!

type ListNatural = [()]

For example:

twoL = [(),()]

threeL = [(),(),()]

What is: (:)
What is: (++)
What is: map (const ())

1. What do these functions do?

f1 x y = foldr (:) x y

f2 x y = foldr (const (f1 x)) [] y

f3 x y = foldr (const (f2 x)) [()] y

2. Continue this definition:

instance Num ListNatural where ...

Note: This requires ListNatural to be declared as a newtype1. One can
ask: Why?

2.6 Type derivation

Give the types of the following expressions:

1. (.)(:)

2. (:(.))

3. ((.):)

4. ((:):)

5. Haskel wheels: (.)(.)

6. The Haskell smiley: (8-)

7. Haskell goggles: (+0).(0+)

8. A Haskell treasure: (($)$($))

9. Haskell swearing: ([]>>=)(_->[(>=)])

1The newtype construct is explained e.g. on the Haskell wiki:
http://haskell.org/haskellwiki/Newtype.

3

