
Parsing with Haskell

Lennart Andersson
Computer Science
Lund University

October 28, 2001

Introduction

This will be an extended example that will provide the basis for a small program project resulting
in an interpreter for an imperative language. The example will show how abstraction and
higher order functions can be used to make the parsing program look like the grammar for the
imperative language.

The example will decompose a nontrivial problem into a large number of very small problems.
Most of them can be solved with almost trivial functions. Actually, the longest function in the
example has just 7 lines of code. To do this decomposition requires a fair amount of experience;
it should be a lot easier to understand the functions and the program. We believe it is a good
programming strategy to decompose a nontrivial problem into problems that are small and
almost trivial.

The programming language will have statements and integer expressions as its main building
stones. Expressions will be represented in the interpreter with the following data type.

data Expr = Num Int | Var String | Add Expr Expr
| Sub Expr Expr | Mul Expr Expr | Div Expr Expr

As an example the expression 2*(x+3) will be represented by

Mul (Num 2) (Add (Var "x") (Num 3))

Statements will be represented using

data Statement =
Assignment String Expr |
...

so that the assignment statement count := count + 1 is represented by

Assignment "count" (Add (Var "count") (Num 1))

We are going to define parsing functions that takes such strings as arguments and returns the
corresponding representation. We are going to introduce a few very simple parsers and some
operators for combining parsers that may be used to construct complex parsers.

1

A parsing function will usually not parse all of the input string, but just a prefix. The remainder
of the string will be the input to another parser. Suppose that we have a parser which accepts an
identifier consisting of letters, another one accepting the string “:=” and a third one accepting an
expression and returning a pair with some representation of the accepted string and a remainder
string:

ident "count:=count+1;" -> ("count", ":=count+1;")
becomes ":=count+1:" -> (":=", "count+1;")
expr "count+1;" -> (Add (Var "count") (Num 1), ";")

The arrow -> denotes evaluation. We can combine these parsers to a parser for an assignment
statement:

assignment str = (Assignment id e, rest3) where
(id, rest1) = ident str
(_, rest2) = becomes rest1
(e, rest3) = expr rest2

The type of such parsers would be

type Parser a = String -> (a, String)

A Parser a takes a string argument and returns a pair. We will call the first component the
result of the parser and second the remainder string. Thus we have

ident :: Parser String
becomes :: Parser String
expr :: Parser Expr
assignment :: Parser Statement

A parser should either accept or reject its input. The Prelude defines a data type for handling
two such alternatives.

data Maybe a = Nothing | Just a

This type can be used in any context where a computation either fails or returns some valid
result. We redefine our parser type

type Parser a = String -> Maybe (a,String)

and the parsers so that e.g.

ident "count:=count+1;" -> Just("count",":=count+1;")
ident "123:=count+1;" -> Nothing

The type definitions just give synonyms to type expressions; there are no constructors as in the
case of data definitions.

Exercise 1 Define semicolon :: Parser Char so that

semicolon "; skip" -> Just(’;’, " skip")
semicolon "skip" -> Nothing

Exercise 2 Define becomes.

Exercise 3 Define a parser char :: Parser Char which accepts one character. The solution
appears on the next page, don’t look!

2

Basic parsers

The basic parsers are almost trivial. The first one will accept one character and is defined by

char :: Parser Char
char (c:cs) = Just(c,cs)
char [] = Nothing

Parser Char is a synonym for String -> Maybe(Char,String). The function fails if the input
string is empty. Some examples

char "" -> Nothing
char "1" -> Just(’1’,"")
char "abc" -> Just(’a’,"bc")

The next parser is even simpler.

fail :: Parser a
fail cs = Nothing

This parser will never accept any input, so it seems to be useless. Actually we will later define
a similar parser which will print an error message and abort the computation. The name fail

is defined in the Prelude so we have hide it when importing the Prelude. If you test fail by
applying it to a string the system refuses to print Nothing:

> fail "abc"
ERROR: Cannot find "show" function for:
*** expression : fail "abc"
*** of type : Maybe (a,[Char])

In order to print (show) the result the Haskell system must know how to print values of type
a which occurs in Maybe (a,[Char]) even if no such value is present in Nothing. Supplying a
printable type fixes the problem:

> fail "abc" :: Maybe(Int,String)
Nothing

The same error is reported if you enter an empty list to the system:

> []
ERROR: Cannot find "show" function for:
*** expression : []
*** of type : [a]

While fail is extreme in one way the next parser, return, is extreme in opposite sense; it will
always succeed without inspecting the input string. It returns its first argument that may be of
any type.

return :: a -> Parser a
return a cs = Just(a,cs)

Examples

return 0 "abc" -> Just(0,"abc")
return (Add (Var "count") (Num 1)) ";" -> Just(Add (Var "count") (Num 1)), ";")

The return function is defined in the Prelude for a similar but different purpose.

3

Parser operators

The first parser operator will be an infix operator denoted by ?. If m :: Parser a is a parser
and p :: a -> Bool is a predicate then (m ? p) is a parser which applies m to the input string
and tests if the result satisfies p.

infix 7 ?
(?) :: Parser a -> (a -> Bool) -> Parser a
(m ? p) cs =
case m cs of

Nothing -> Nothing
Just(a,cs) -> if p a then Just(a,cs) else Nothing

The infix directive declares ? to be an infix operator with precedence 7. The precedence levels
for the parser operators will be chosen so that most parentheses may be omitted.

The Prelude contains a predicate for deciding if a character is a digit, isDigit. We can define
a parser accepting one digit

digit :: Parser Char
digit cs = (char ? isDigit) cs

Examples

digit "123" -> Just(’1’,"23")
digit "abc" -> Nothing

If the right member of a function definition applies an expression not containing the last argu-
ment to the last argument then this argument may be removed from both sides of the definition.

digit = char ? isDigit

The second parser operator corresponds to alternatives in the grammar. We will use an infix
operator, !, for this parser combinator. If m and n are parsers of the same type then (m ! n)

will be a parser which first applies m to the input string which will be the result unless m fails.
In that case n is applied to the input.

The definition is simple:

infixl 3 !
(!) :: Parser a -> Parser a -> Parser a
(m ! n) cs =

case m cs of
Nothing -> n cs
mcs -> mcs

The infixl directive tells the Haskell system ! will be an infix operator which associates to the
left. Left association means that m ! n ! k is evaluated as (m ! n) ! k. Some examples:

(char ! digit) "abc" -> Just(’a’, "bc")
(digit ! char) "abc" -> Just(’a’, "bc")
(digit ! return ’0’) "abc" -> Just(’0’, "abc")
(digit ! char) "" -> Nothing

4

We have assigned precedences to the operators so that m ? p ! n will mean (m ? p) ! n and
not m ? (p ! n) which would give a type mismatch error.

Exercise 4 The Prelude defines the predicates isAlpha, isSpace:: Char -> Bool which decide
if a character is a letter or space character (blank, tab, newline). Define parsers accepting a
letter and a space character, letter, space :: Parser Char.

Exercise 5 Define a parser alphanum :: Parser Char which accepts a letter or a digit.

A parser accepting a given character is easily defined.

lit :: Char -> Parser Char
lit c = char ? (==c)

The operator section (==c) is equivalent to the predicate (\x -> x==c). The predicate decides
if the given character is the the same as the one accepted by char.

lit ’a’ "abc" -> Just (’a’,"bc")
lit ’b’ "abc" -> Nothing

Exercise 6 Redefine semicolon :: Parser Char using lit. The definition should not include
the string argument.

The next parser combinator applies two parsers in sequence where the remainder string from
the first one is fed into the other. The results of the two parsers are combined into a pair.

infixl 6 #
(#) :: Parser a -> Parser b -> Parser (a, b)
(m # n) cs =

case m cs of
Nothing -> Nothing
Just(p, cs’) ->

case n cs’ of
Nothing -> Nothing
Just(q, cs’’) -> Just((p,q), cs’’)

A parser accepting two characters follows.

(char # char) ":=1" -> Just((’:’, ’=’), "1")

We may name it:

twochars :: Parser (Char, Char)
twochars = char # char

Exercise 7 Redefine becomes :: Parser (Char, Char) using twochars and the ? operator. The
definition should not include the string argument.

Sometimes we would like to transform the result of a parser. This may be done with

5

infixl 5 >->
(>->) :: Parser a -> (a -> b) -> Parser b
(m >-> k) cs =
case m cs of
Just(a,cs’) -> Just(k a, cs’)
Nothing -> Nothing

The right operand of >-> named k is the function defining the transformation. The result of the
operation is a new parser. We may use it to define a parser which accepts a digit and returns
an Int using digitToInt from the Prelude.

digitVal :: Parser Int
digitVal = digit >-> digitToInt

Example

digitVal "123" -> Just(1, "23")
digitVal "abc" -> Nothing

Exercise 8 Define a parser that accepts a letter and returns an upper case letter. The Prelude
function toUpper :: Char -> Char transforms any letter to its uppercase form.

Exercise 9 Define sndchar :: Parser Char which accepts two characters and returns the second
one. Use twochars and the transformation operator. Examples

sndchar "abc" -> Just(’b’, "c")
sndchar "a" -> Nothing

Exercise 10 Redefine twochars :: Parser String so that it returns a String with two charac-
ters instead of a pair of characters.

Exercise 11 Define an operator (-#) :: Parser a -> Parser b -> Parser b which applies two
parsers in sequence as # but throws away the result from the first one. Use # and >-> in the
definition. Examples

(char -# char) "abc" -> Just(’b’, "c")
(char -# char) "a" -> Nothing

Exercise 12 Define a similar operator (#-) :: Parser a -> Parser b -> Parser a which ap-
plies two parsers in sequence as # but throws away the result from the second one.

It is useful to be able to apply a parser iteratively to the input string. First we define iterate m i

which will apply the parser m to the input string i times with the result in a list with i elements.
Example

iterate digitVal 3 "123456" -> Just([1, 2, 3], "456")
iterate letter 3 "a123" -> Nothing

The definition uses primitive recursion over natural numbers.

6

iterate :: Parser a -> Int -> Parser [a]
iterate m 0 = return []
iterate m i = m # iterate m (i-1) >-> cons

where

cons :: (a, [a]) -> [a]
cons (hd, tl) = hd:tl

The name iterate is defined in the Prelude so it is necessary to hide it or to rename the new
function.

It is even more useful to be able to iterate a parser as long as it succeeds. Assuming that iter

does this we could use it like follows

iter digitVal "123abc" -> Just([1, 2, 3], "abc")
iter digit "123abc" -> Just([’1’, ’2’, ’3’], "abc") -> Just("123", "abc")
iter digit "abc" -> Just([], "abc") -> Just("", "abc")

The definition will again be recursive but termination will be signaled by the failure of the
recursive branch. In that case we just return the empty list.

iter :: Parser a -> Parser [a]
iter m = m # iter m >-> cons ! return []

Inserting parentheses to indicate precedences of the operators we get

iter m = ((m # (iter m)) >-> cons) ! (return [])

Exercise 13 Why is it an error to take the alternatives in the opposite order?

iter m = return [] ! m # iter m >-> cons

We can use iter to define a parser for a string of letters. Our first attempt is

letters :: Parser String
letters = iter letter

This is OK provided we are willing to accept an empty string. If this is not the case we define
it as

letters = letter # iter letter >-> cons

We now consider the problem of whitespace, i.e. blanks and newline characters, in the input.
We define token which for a given parser will return a parser which will remove any whitespace
after the accepted string.

token :: Parser a -> Parser a
token m = m #- iter space

We now define two very useful parsers.

7

word :: Parser String
word = token letters

accept :: String -> Parser String
accept w = token (iterate char (size w) ? (==w))

Examples

word "count := count+1" -> Just("count", ":= count+1")
word ":= count+1" -> Nothing
accept "while" "while x do x:=x-1" -> Just("while", "x do x:=x-1")
accept "if" "while x do x:=x-1" -> Nothing

Sometimes we need to make the result from one parser available to another. The following
operator provides the means.

infix 4 #>
(#>) :: Parser a -> (a -> Parser b) -> Parser b
(m #> k) cs =

case m cs of
Nothing -> Nothing
Just(a,cs’) -> k a cs’

After applying the parser m to the input string both the result and the remainder input string
are given to the second operand, k :: a -> Parser b.

This operator is very useful for parsing numbers and arithmetic expressions with operators that
associate to the left like - and /. These parsers will be nontrivial so we start with a simpler and
not so useful parser. It will accept two characters provided they are equal and returning just
one character.

double :: Parser Char
double = char #> lit

Remember that lit :: Char -> Parser Char needs on argument to become a parser which will
accept this character. The character is provided as the result of the first parser. Examples

double "aab" -> Just(’a’, "b")
double "abb" -> Nothing

In order to construct a number parser we define three functions, bldNumber, number’ and number.

bldNumber :: Int -> Int -> Int
bldNumber n d = 10*n+d

bldNumber n d just “appends” the digit d after n.

bldNumber 123 4 -> 1234

number’ :: Int -> Parser Int
number’ n =
digitVal >-> bldNumber n #> number’
! return n

number :: Parser Int
number = token (digitVal #> number’)

8

The argument in number’ will serve as an accumulator which will be returned when no more input
can be consumed. Otherwise the next digit is “appended” to the accumulator and recursively
given to number’. The number parser accepst the first digit with digitVal and sends it to number’

and finally removes any trailing whitespace. Examples

number’ 1 "abc" -> Just(1, "abc")
number’ 1 "23 abc" -> Just(123, " abc")
number "123 abc" -> Just(123, "abc")

Exercise 14 Define the operator # using #>. The solution should not contain Just or Nothing.

An expression parser

We are going to construct a parser for arithmetic expressions with integer numbers, variables, ad-
ditions, subtractions, multiplications, divisions and parentheses with the usual laws for operator
precedence. A grammar is given by

expr ::= term expr’
expr’ ::= addOp term expr’ | empty
term ::= factor term’
term’ ::= mulOp factor term’ | empty
factor::= num | var | "(" expr ")"
addOp ::= "+" | "-"
mulOp ::= "*" | "/"

The word empty denotes the empty string. In the definition of factor, num is a string of digits
and var a string of letters. There are several grammars describing ordinary expressions. The
current one has been chosen since it will be possible to define a parser which is very similar.
The result of the parser will be a value of the following type.

data Expr =
Num Int | Var String | Add Expr Expr |
Sub Expr Expr | Mul Expr Expr | Div Expr Expr

We are going to build the parser from the bottom starting with parsers for mulOp and addOp.
mulOp will accept either * or / and will return Mul or Div. These parsers are trivial to define
without our parser operators:

mulOp (’*’:rest) = Just(Mul, rest)
mulOp (’/’:rest) = Just(Div, rest)
mulOp _ = Nothing

We prefer, however, to make the definition on the abstract level. The reason is that if we do not
exploit the fact that the representation by the Maybe type is visible outside the Parser module
then we may change it without changing any module using the Parser module. Such a change
is suggested at the end of this paper.

mulOp, addOp :: Parser ((Expr, Expr) -> Expr)
mulOp = lit ’*’ >-> (_ -> Mul)

! lit ’/’ >-> (_ -> Div)

Examples

9

mulOp "*2*3" -> Just(Mul, "2*3")
mulOp "/2*3" -> Just(Div, "2*2")
mulop "+2*3" -> Nothing

The addOp parser is analogous.

The num and var parsers are simple; we just give the result from word and number to the relevant
Expr constructor.

var :: Parser Expr
var = word >-> Var
num :: Parser Expr
num = number >-> Num

Examples

var "count + 1" -> Just(Var "count", "+ 1")
num "123*456" -> Just(Num 123, "*456")

The expr, term and factor parsers are going to be mutually recursive. It may be simpler to define
and test such functions if one temporarily eliminates the recursion. We do it by simplifying the
factor production.

factor :: num | var | "(" var ")"

We already have parsers for the two first alternatives. A parser for the last alternative is given
by

lit ’(’ -# var #- lit ’)’

We conclude with

factor :: Parser Expr
factor = num ! var ! lit ’(’ -# var #- lit ’)’

A straightforward implementation of the rule for terms would parse e.g. the expression 6/3/2
as 6/(3/2) contrary to the ordinary rules. In order to get the interpretation (6/3)/2 we may use
the same technique as in the definition of number’ with a parameter to accumulate the result.

term’ :: Expr -> Parser Expr
term’ e =

mulOp # factor >-> bldOp e #> term’ !
return e

The parameter e will be the result of the previous parser. If the input doesn’t start with a mulOp

we just return e. Otherwise mulOp # factor results in a pair which is given to bldOp e. The
transformed result is given recursively to term’. The transformation bldOp is defined by

bldOp :: Expr -> (Expr -> Expr -> Expr, Expr) -> Expr
bldOp e (oper,e’) = oper e e’

Example

10

bldOp (Num 1) (Mul, Num 2) -> Mul Num 1 Num 2

The result of all this is given recursively to term’ which will find a new mulOp or terminate.

term’ (Num 1) "*2" ->
(mulOp # factor >-> bldOp (Num 1) #> term’) "*2" ->
(term’ (bldOp (Num 1) (Mul, Num 2))) "" ->
(term’ (Mul (Num 1) (Num 2))) "" ->
Just(Mul (Num 1) (Num 2), "")

The definition of term is simple; parse a factor and send the result to term’.

term :: Parser Expr
term = factor #> term’

Examples

term’ (Num 1) "" -> Just(Num 1, "")
term "1*2" -> Just(Mul (Num 1) (Num 2), "")
term "6/3/2" -> Just(Div (Div (Num 6) (Num 3)) (Num 2), "")

The definitions of expr’ and expr are analogous.

expr’ :: Expr -> Parser Expr
expr’ e =

addOp # term >-> bldOp e #> expr’ !
return e

expr :: Parser Expr
expr = term #> expr’

We may now compose the factor, term and expr parsers resetting the first one to make them
mutually recursive.

factor =
num !
var !
lit ’(’ -# expr #- lit ’)’ !
err "illegal factor"

term’ e =
mulOp # factor >-> bldOp e #> term’ !
return e

term = factor #> term’
expr’ e =

addOp # term >-> bldOp e #> expr’ !
return e

expr = term #> expr’

We have added another alternative parser in factor in order to get an informative message for
illegal input. Without it, any invalid string argument will just return Nothing.

The err parser is defined by

err :: String -> Parser a
err message cs = error (message ++ " near " ++ cs ++ "\n")

11

It will print the message and the offending input and abort the computation.

Exercise 15 Define a parser require :: String -> Parser a that behaves as accept but emits
an error message instead of returning Nothing.

Program structure

The program parts that we have developed so far should be divided into two parser modules and
one expression module. The first parser module should contain the parser type, the basic parsers
and parser operators, while the second one contains derived parsers and parser operators. The
representation of parsers as values of type String -> Maybe(a, String) will not be exploited
outside the first parser module.

Since we are going to define parsers for more than one data type it is useful to have a type class
declaring the names parse and toString and defining fromString. We can then use these names
for all the data types and the relevant one will be chosen using the context where the name is
used. We use the name Parse for the type class.

It is inconvenient to use qualified import for the parser module, so we refrain from giving the
parser type the conventional name T.

module CoreParser(Parser, char, return, fail, (#), (!), (?), (#>), (>->),
Parse, parse, toString, fromString) where

import Prelude hiding (return, fail)
infixl 3 !
infixl 7 ?
infixl 6 #
infixl 5 >->
infixl 4 #>

class Parse a where
parse :: Parser a
fromString :: String -> a
fromString cs =

case parse cs of
Just(s, []) -> s
Just(s, cs) -> error ("garbage ’"++cs++"’")
Nothing -> error "Nothing"

toString :: a -> String

type Parser a = String -> Maybe (a, String)

char :: Parser Char
char []= Nothing
char (c:cs) = Just (c, cs)

return :: a -> Parser a
return a cs = Just (a, cs)

fail :: Parser a
fail cs = Nothing

12

(!) :: Parser a -> Parser a -> Parser a
(m ! n) cs = case m cs of

Nothing -> n cs
mcs -> mcs

(?) :: Parser a -> (a -> Bool) -> Parser a
(m ? p) cs =

case m cs of
Nothing -> Nothing
Just(r, s) -> if p r then Just(r, s) else Nothing

(#) :: Parser a -> Parser b -> Parser (a, b)
(m # n) cs =

case m cs of
Nothing -> Nothing
Just(a, cs’) ->

case n cs’ of
Nothing -> Nothing
Just(b, cs’’) -> Just((a, b), cs’’)

(>->) :: Parser a -> (a -> b) -> Parser b
(m >-> b) cs =

case m cs of
Just(a, cs’) -> Just(b a, cs’)
Nothing -> Nothing

(#>) :: Parser a -> (a -> Parser b) -> Parser b
(p #> k) cs =

case p cs of
Nothing -> Nothing
Just(a, cs’) -> k a cs’

The derived parsers appear in Parser.hs.

module Parser(module CoreParser, digit, digitVal, chars, letter, err,
lit, number, iter, accept, require, token,
spaces, word, (-#), (#-)) where

import Prelude hiding (return, fail)
import CoreParser
infixl 7 -#, #-

type T a = Parser a

err :: String -> Parser a
err message cs = error (message++" near "++cs++"\n")

iter :: Parser a -> Parser [a]
iter m = m # iter m >-> cons ! return []

cons(a, b) = a:b
. . .

13

The expression module will have a few other functions not mentioned previously. We rename the
main type to T. The value function should evaluate an expression. It will need a “dictionary”
to find the values of the variables.

The expression module will make heavy use of the parser functions so it is convenient to import
the parser module without qualification.

module Expr(Expr, T, parse, fromString, value, toString) where
import Prelude hiding (return, fail)
import Parser
import qualified Dictionary

data Expr = Num Integer | Var String | Add Expr Expr
| Sub Expr Expr | Mul Expr Expr | Div Expr Expr
deriving Show

type T = Expr
...

instance Parse Expr where
parse = expr
toString = shw 0

Parsing with ambiguous grammars

This description is mainly inspired by an article by Phil Wadler, [4]. He uses an elegant trick
to code the failure and the success of a parser and finding all possible parses of a string. The
Maybe data type may be viewed as a special case of the list type, but with the list either being
empty, Nothing, or having one element, Just a. Failure will be represented by the empty list
while a nonempty list contains all possible successes. He defines the parser type by

type Parser a = String -> [(a,String)]

As an example the number parser will find

number "123abc" -> [(123,"abc"),(12,"3abc"),(1,"23abc")]
number "abc" -> []

A few modifications are needed in the Parser module. The basic parser must be changed to
return lists instead of Maybe values.

char [] = []
char (c:cs) = [(c,cs)]

return a cs = [(a,cs)]

fail cs = []

The operators must also be adapted. Using list comprehension they become “one-liners”

(m ? p) cs = [(a,cs’) | (a,cs’) <- m cs, p a]

(m ! n) cs = (m cs) ++ (n cs)

14

(m # n) cs = [((a,b),cs’’) | (a,cs’) <- m cs, (b,cs’’) <- n cs’]

(m >-> b) cs = [(b a, cs’) | (a,cs’) <- m cs]

(p #> k) cs = [(b,cs’’) | (a,cs’) <- p cs, (b,cs’’) <- k a cs’]

The err and hence the require parsers can no longer be used in Expr and Program to give
adequate error messages.

Parsec

There is a “industrial stength” parser library called Parsec, [2]. It uses basically the same
technique as above, but is larger and uses do notation extensively. An expression parser using
this library follows.

import Parsec
import ParsecExpr

data Expr = Num Int | Var String | Add Expr Expr
| Sub Expr Expr | Mul Expr Expr | Div Expr Expr
deriving Show

expr :: Parser Expr
expr = buildExpressionParser table factor

<?> "expression"

table = [[op "*" Mul AssocLeft, op "/" Div AssocLeft],
[op "+" Add AssocLeft, op "-" Sub AssocLeft]]

where
op s f assoc

= Infix (do{ string s; return f}) assoc

factor = do{ char ’(’
; x <- expr
; char ’)’
; return x}

<|> number
<|> variable
<?> "simple expression"

number :: Parser Expr
number = do{ ds<- many1 digit

; return (Num (read ds))}
<?> "number"

variable :: Parser Expr
variable = do{ ds<- many1 letter

; return (Var ds)}
<?> "variable"

The library has special support for parsing expressions. Operator precedences and associativ-
ities are given using a table. do notation is used to express sequential composition of parsers.
Alternatives are separated by <|> and <?> is used as our err parser.

15

References

[1] Hutton, G. and Meier, E., Monadic Parser Combinators, Technical report NOTTCS-TR-
96-4, Department of Computer Science, University of Nottingham, 1996.

[2] Leijen, D., Parsec, a fast combinator parser, Oct 2001,
http://www.cs.ruu.nl/˜daan/parsec.html.

[3] Wadler P., How to replace failure by a list of successes, 2nd International Conference on Func-
tional Programming Languages and Computer Architecture, Springer-Verlag, Nancy France,
September 1985. http://cm.bell-labs.com/cm/cs/who/wadler/.

[4] Wadler, P., Monads for functional programming, Marktoberdorf Summer School on Program
Design Calculi, Springer Verlag, NATO ASI Series F: Computer and systems sciences, Volume
118, August 1992. http://cm.bell-labs.com/cm/cs/who/wadler/.

16

