
Non-photorealistic Rendering
Jakub Olejnik Trevina Litchmore

Lund University
Sweden

Abstract
For this project, we implemented a non-physically based renderer
that produced images that mimicked sketches. The basis of our
implementation was the paper by [Ježek et al. 2018] in which mul-
tiple passes were used to generate this effect. We optimized the
algorithm by implementing it with one pass through the geometry
shader instead of three separate passes. Additionally, we combined
some aspects of the sketch renderer with diffuse shading and dither-
ing to create a renderer that would output images in the style of
the famous Pop Art artist, Roy Lichtenstein. Our scene is diffuse
shaded, but the shadows are rendered using a dithering technique
adapted from an online article by [sysrpl ]. For relatively large
scenes, our renderer performed quite well. However, this aspect
of our program was not rigorously tested, and it would have been
interesting to see how well it would have performed with larger
instances of geometry (i.e. scenes with hundreds of thousands of
triangles) or even in combination with animation.

1 Introduction
Realistic computer graphics were always associated with the most
advanced technology and memorable experiences. Nowadays this
is definitely still true, although the advancement in the field of
3D graphics is not as noticeable (especially by people outside the
industry) as in early 2000s. Hence, the term photo-realism be-
came deprecated, since somewhat photo-realistic graphics are eas-
ily achievable on almost every hardware we use today and are not
considered a nuisance unless they are ultra photo-realistic. This led
to creators using unconventional ways to stylize their work, to make
it more distinguishable from others. In the past, this stylization was
often the consequence of hardware limitation,but today it is is a con-
scious choice on part of the 3D graphics artist: non-photorealistic
rendering.This phrase can be used to describe a variety of styles,
but in this project we focus on an implementation of a pencil sketch
shader and a toon shader with dithering.

2 Application
Silhouette detection is a crucial part of our pipeline. In order to per-
form computation properly, appropriate data representation is re-
quired, which in our case is in the form of adjacent triangles. When
a 3D model is loaded from an .obj file, instead of saving the ob-
ject’s vertex indices directly to the index buffer, a few additional
operations are needed.

To build this triangle adjacency data, we used a hash table. The
implementation of this hash table was documented within an online
discussion [Reed ]. We used the std::unordered map data structure,
where the key is an edge of a triangle, and the value is a vertex
adjacent to this edge.

For removing duplicate edges, we based our solution on the ar-
ticle by [Meiri ] where another hash table is used for removing in-
dices pointing to an already saved vertex. This me method was
much faster than the one proposed in [Ježek et al. 2018]. In this
paper, removing duplicate edges involved iterating over the triangle
adjacency data multiple times by comparing all the saved edges. In
terms of efficiency, the hash table was a much faster way to achieve
the same result.

Once the data was properly processed, it was run through the
rendering pipeline. During the first pass a depth mask was gener-
ated and stored in a texture for later use. In the second pass we
performed silhouette detection. Triangle adjacency data was used
as an input to the geometry shader. All of the edges were tested
for visibility and significance based on the depth test and the result
of the dot product between their normal and light direction. Before
being emitted, the lines were divided at a random point between
them, and then the vertices were randomly chosen to be displaced
by a random vector. Both random values were read from the noise
texture, which was generated at the initialization of the program.
It was a 2D array of RGB values, in the range from 0 to 1, gen-
erated using uniform std::uniform real distribution. Achieving the
pop art effect required one additional step.

During the first pass, a basic diffuse texture was also created. It
was built in a fragment shader that used the object’s material dif-
fuse data to apply a flat color to every surface. In the next step, the
shade of the calculated color was used to compute the intensity of
the dithering effect. To obtain an outline that was just a single fine
line, the step of displacing vertices was omitted.

3 Results

Final effects of the project can be seen at Fig. 1 and Fig. 2.

Figure 1: Final result of a model being rendered using the imple-
mented pipeline - Sketch effect



Figure 3: Sponza scene with controls and textures visualizing steps
in the pipeline

Figure 2: Final result of a model being rendered using the imple-
mented pipeline - Pop Art effect

When it comes to performance, the project was mainly tested in
two environments:

A) a desktop PC with a dedicated GPU - Nvidia GeForce GTX
1050 Ti,

B) a laptop with integrated GPU - Intel HD Graphics 520.

In environment A, the project rendered in under 20 ms for each
model in both styles, even for the most complex one - sponza (see
Fig. 3). It was only for this scene that part of the pipeline responsi-
ble for silhouette detection was working longer than 1 ms. Depend-
ing on the intensity of the camera movement, time elapsed varied
from 2 ms to 5 ms.

In environment B, the rendering time was still satisfactory for
simple models with 1000 vertices or fewer, but when more com-
plex one were introduced the drop in performance was noticeable.
Sponza was rendered in under 23 ms when the camera was still and
around 29-34 ms when it was in movement. The time to render
silhouette detection increased by 13 ms.

4 Discussion
When it came to implementing the pipeline as described in Ježek
et. al (2018), the first part of the implementation went relatively
smoothly. The noise texture and depth mask were generated ac-
cording to what was written in the paper. However, creating the
triangle adjacency list was the most difficult aspect of the imple-
mentation because OpenGL does not provide a function to generate
such a list like the High Level Shading Language (HLSL) from Di-
rectX [White et al. ]. Thus, we had to program an algorithm that
would easily generate a triangle with adjacent vertices, which went
through a few iterations.

At first we created a 2xN matrix, where we had N-columns with
two rows. Each column and index represented a triangle within
the mesh. We iterated over this matrix to find the adjacent points of
each triangle. However, it was too computationally expensive when
we tried it with larger models such as the sponza geometry that we
used in our project. Afterwards, we implemented a hash table of
edges that allowed us to quickly determine the adjacent vertices for
each triangle. With this version of the algorithm, we were able to
quickly render the geometry.

However, when it came to implementing the other two graph-
ics pipelines (the one for the segmentation of edges and the other
for the transformation of those edges into strokes), we were not
successful. In this case, we programmed a workaround that was a
good approximation of what we wanted to accomplish. Instead of
creating the two additional pipelines, we computed the strokes in
the same geometry shader where we tested the edges against the
depth masks and removed the minor edges (edges where there is no
significant change in geometry). In this case, we were able to save
on the amount of processing needed to generate the same effect.

For the sketch generation component of the project, one thing
that could be improved would be the ability of the algorithm to
capture finer edge detail. When looking at the sponza geometry
capture, the lines on the face of the lion were not captured well by
the algorithm.

Figure 4: Lion head model from sponza scene after being passed
through the sketch renderer pipeline.

Perhaps altering the increasing the limits of when we render the
lines or adding a second pass for those finer lines, would be a way
to improve the algorithm.

5 Conclusion
With the optimized sketch rendering algorithm combined with
dithering and diffuse shading, it would be interesting to see how
well it performs with animated objects. For each render it redraws
the stroke lines, as well as the circles for dithering. Animation also
includes quite a bit of computation as well. The combination of the
computational complexity could make it difficult to apply such a
renderer in those cases, but it would be an interesting avenue to pur-
sue. Additionally, as has been evidenced in many films both within



the art house genre and in mainstream entertainment, the unique
styles generated by such shaders will continue to be in-demand due
to the need for unique visuals to standout from the competition.

References
JEŽEK, B., HORÁČEK, D., VANĚK, J., AND ANTONIN, S. 2018.

Non-photorealistic Rendering and Sketching Supported by GPU:
5th International Conference, AVR 2018, Otranto, Italy, June
24–27, 2018, Proceedings, Part I. 07, 447–463.

MEIRI, E. Tutorial 39: Silhouette Detection. https://
ogldev.org/www/tutorial39/tutorial39.html.
Accesed: 2021-12-07.

REED, N. Building triangle adjacency data. https:
//gamedev.stackexchange.com/questions/
62097/building-triangle-adjacency-data.
Accesed: 2021-12-08.

SYSRPL. Hatching Shaders. https://www.codebot.org/
articles/?doc=9525. Accesed: 2021-12-10.

WHITE, S., MARTINEZ, J., BATCHELOR, D., AND SATRAN, M.
Geometry-Shader Object. https://docs.microsoft.
com/en-us/windows/win32/direct3dhlsl/
dx-graphics-hlsl-geometry-shader#
return-value. Accessed:2021-30-06.

https://ogldev.org/www/tutorial39/tutorial39.html
https://ogldev.org/www/tutorial39/tutorial39.html
https://gamedev.stackexchange.com/questions/62097/building-triangle-adjacency-data
https://gamedev.stackexchange.com/questions/62097/building-triangle-adjacency-data
https://gamedev.stackexchange.com/questions/62097/building-triangle-adjacency-data
https://www.codebot.org/articles/?doc=9525
https://www.codebot.org/articles/?doc=9525
https://docs.microsoft.com/en-us/windows/win32/direct3dhlsl/dx-graphics-hlsl-geometry-shader#return-value
https://docs.microsoft.com/en-us/windows/win32/direct3dhlsl/dx-graphics-hlsl-geometry-shader#return-value
https://docs.microsoft.com/en-us/windows/win32/direct3dhlsl/dx-graphics-hlsl-geometry-shader#return-value
https://docs.microsoft.com/en-us/windows/win32/direct3dhlsl/dx-graphics-hlsl-geometry-shader#return-value

	Introduction
	Application
	Results
	Discussion
	Conclusion

