
Terrain Flight Project for EDAN35
Charlie Mrad* Melker Gustafsson†

Lund University
Sweden

1 Abstract
Recreating the earth in 3D graphics provides many opportunities
to use advanced rendering effects. We chose to do it with a de-
ferred shading renderer that provides us with easy shadows and
good performance when using many lights. To increase the realism
of the recreation we used geographic data taken from NASA and
used techniques for ocean shading that add wave texture and foam-
ing. The results are a demo that features an airplane flying over the
earth with colorful oceans and geographically accurate mountains.
The performance was never prioritised but if it had been using a de-
ferred shading renderer would have been scrapped in favor of more
straight forward rendering methods since we did not take full ad-
vantage of the deferred shading.

2 Introduction
We have made a prototype of a game where the user flies an airplane
over the earth. We got the project idea from a Youtube video of
somebody doing a similar project in Unity [1], and we got very
inspired. Our initial plan was to include multiple light sources apart
from the sun in the form fire and explosions, hence we decided
to use deferred rendering. This project involves several rendering
techniques used in the course already but also allowed us to dive
deeper into deferred shading and using render passes to accomplish
the effects we wanted. We had also initially planned use the jump
flooding algorithm [2] to create a the effect of a wave-foam around
coastlines but we ended up scrapping the idea when it turned out
to not be feasible. Additionally we were also thinking of using
compute shaders to create cloud particles that could be interacted
with. The effect would have been similar to the one created in [1]
but we did not have time to fully implement that.

3 Application
For this project we chose to build upon the deferred shading assign-
ment from the course. We also merged some code from previous
assignments and the previous course (EDAF80), such as the para-
metric sphere mesh generating code.

3.1 Earth

The earth geometry was based of a highly tessellated sphere with
around 10800 ∗ 5400 triangles. We chose this number in order to
match the number of pixels present in the height map texture used
for the earth. In hindsight, this doesn’t help us much since the ge-
ometry is generated using a simple UV-sphere technique (i.e map-
ping a cylinder to the sphere). This produces a big variety of vertex
densities that favors the poles and therefore stretches the texture at
the poles and also means that vertex density and thus height map
accuracy is poor at the equator. An alternative could have been to
implement a sphereized cube or a subdivided icosahedron, although
the lack of control over face number makes the former more attrac-
tive.

*e-mail: ch3045mr-s@student.lu.se
†me1873gu-s@student.lu.se

3.1.1 Surface

The surface used textures from NASAs visible earth webpage1 and
from JHT’s planet pixel emporium2. The textures used were all
scaled to dimensions 10800 x 5400. We used in total a texture for
the diffuse color, specular mapping, normal mapping of land areas
and height mapping. All texture data was used when filling the G-
buffer like for any other piece of geometry.
However the height mapping works by offsetting the vertices in
their normal direction but the height value used is actually blurred
across the neighbourhood of the sampled value from the height
map. This is done using a simple box-blur algorithm and produces
much smoother results when height values start increasing sharply.

3.1.2 Ocean

In order to create the oceans we used two normal maps for wave
patterns and scrolled the both in opposite directions of each other
so that the water doesn’t look like it is flowing in any particular di-
rection. In order to differentiate land from water we checked at the
values for the specular map as it so happens that the specular map
is set to 0 wherever there is land and 1 otherwise. So if the specular
map was greater than 0 at the fragment being rendered then it would
apply any water effects if the wave textures were present.
As for the wave-foam patterns around coastlines; that was accom-
plished by generating a texture iteratively in a prepass we dubbed
”pass 0”. This pass reads in a texture that is initalized to the specular
map from before but with land encoded in the red channel and the
oceans encoded in the blue channel. It then looks around each ocean
pixel in that texture that hasn’t been processed yet and chooses the
smallest value of any neighbouring ocean pixel as its value only if
any of the neighbouring ocean pixels have been processed already.
If a land pixel is found in the neighbours the pixel value is set to be
a default coastline pixel value, and if no neighbouring pixels have
been processed already then nothing happens. Essentially this pro-
cess gradually builds up a somewhat square shaped distance map
that maps each pixel to a distance from the coastline. The square
nature of the distance map is much more evident with small islands
than with bigger landmasses.
To finalize the effect the generated distance map is put through a
sine function that is phase-shifted by the distance and animated by
the elapsed time in seconds. And then in order to add some vari-
ation we also factor in some 3 dimensional Perlin noise sampled
using the texture coordinates and elapsed time. This all then added
on to the diffuse color texture.

3.2 Airplane
The airplane is made using a the Node class from the previous
course assignments. It has a movement direction across the sur-
face expressed as an angle and a movement speed. When moving
it calculates a vector that is tangential to the surface and rotates it
by its movement direction. Then its a simple process of translating
the airplane in that direction as well as correcting it back to the al-
titude it should have so that it does not end up getting further away
from the planet. In order to render the plane we created a second

1https://visibleearth.nasa.gov/collection/1484/blue-marble?page=2
2http://planetpixelemporium.com/earth8081.html



rendering loop during the G-buffer pass that considers the nodes in
the scene and renders those to the G-buffer as well.

4 Results
Our project work resulted in a prototype of a terrain flight over the
earth which can be used as a base for implementing a game. Figure
1 shows our application running in flight mode where the camera
follows the airplane which is controlled by the user. Figure 2 shows
spectator mode where the camera is disconnected from the airplane
and the user is free to inspect the earth from different angles and
distances.

Figure 1: Flight mode

Figure 2: Spectator mode

From a performance perspective, we did not fully utilize the de-
ferred shading technique since only one light source was added,
namely the sun. However, if the application was to be extended, the
current framework that is used gives room for more light sources to
be added efficiently. Apart from the shading technique, we did not
have performance in mind while implementing the application.

Our application is not only a base for developing games. It can
for example also be extended to be used as a geographical learning
tool by adding geographic data of the locations of the earth which
has to be pinpointed by the user. This means that our application is
a prototype for a broad range of uses.

5 Discussion
We are satisfied with the results and finished most of the objectives
that we set up initially. What could be improved is the level of
detail, for example by adding clouds, boats on the ocean, or even
buildings on the mainland that light up during night which would
result in a more immersive experience. Unfortunately time did not
allow us to do this.

We tried to set up a particle system that would represent the
clouds from a compute shader. Our idea was to represent clouds
as a cluster of spheres, where each new sphere would spawn on a
random location on the surface of an already existing sphere. A
fractal noise value would be computed for each existing sphere to
determine which one to add a new sphere to. This would result in
clusters of spheres that would look like clouds. Unfortunately we
did not get the compute shader to work in the time frame that we
had, but instead this is an area for further improvement.

References
[1] Sebastian Lague. I Tried Creating a Game Using Real-world

Geographic Data. URL: https : / / www . youtube .
com / watch ? v = sLqXFF8mlEU & ab _ channel =
SebastianLague. (accessed: 05.11.2021).

[2] Guodong Rong and Tiow-Seng Tan. “Jump flooding in GPU
with applications to Voronoi diagram and distance trans-
form”. In: Proceedings of the 2006 symposium on Interactive
3D graphics and games. 2006, pp. 109–116.


