
Generating Mountains Using Hydraulic Erosion
Mika Rebensburg* Mathilda Larsson†

Lund University
Sweden

Abstract
Generating mountain landscapes can for example be done to create
a more immersive experience in video games or in other applica-
tions. One way of doing so is by approximating the real erosion
of mountains due to rain by simulating thousands of raindrops and
how they shape the landscape. In this project, hydraulic erosion
has been implemented to create a realistic mountain landscape, en-
hanced by basic shading and normal mapping.

1 Introduction
The aim of this project was to create a mountain landscape using
hydraulic erosion and to make the scene as realistic as possible.
While creating mountains with more basic techniques (such as us-
ing noise to create the initial landscape, which was the first step
of our project), the landscape can be improved upon by simulating
how mountains are shaped in nature - by erosion from raindrops.

2 Frameworks
The algorithms were implemented using the OpenGL API together
with “bonobo”, an extension framework used in the course.

3 Algorithms
We first generate a simple quad shaped mesh of triangles. Then,
we change the y-values of the vertices according to heights calcu-
lated using noise which we have based on similar calculations by
[McGuire 2014]. To get a more realistic landscape, we have lay-
ered three noise maps with three different frequencies on top of
each other. Using this technique, a good baseline for the mountain
shapes were obtained, see fig. 2

3.1 Hydraulic Erosion
The next part is simulating raindrops eroding the landscape. The
basic idea is that a raindrop is placed at random on the landscape
with a capacity to carry sediment and a certain lifetime before it is
evaporated [Lague 2019]. The droplet’s height is calculated along
with the direction in which it is flowing based on bilinear interpola-
tion of the heights of the surrounding vertices. The raindrop is then
moved 1 unit in its direction if the direction is larger than zero and if
the new position is still within the defined bounds of the landscape.
The direction is calculated according to eq. 1, where the previous
direction of the raindrop dirnew is taken into account along with
the gradient g and the factor pinertia ∈ [0, 1] [Beyer 2015].

dirnew = dirprev · pinertia − g · (1− pinertia) (1)

The new position posnew is calculated according to eq. 2 based
on the old position posold and the calculated direction dirnew.

posnew = posold + dirnew (2)

If the drop is still viable to continue (i.e. within the defined
boundaries of the landscape), the height for its new position is
calculated. At this point, it is determined if the droplet is to de-
posit part of the sediment it is carrying or if it should erode. The

*m.rebensburg@campus.tu-berlin.de
†ma7472la-s@student.lu.se

droplet will deposit if the difference between its new height and old
height is positive or if the sediment it is carrying is larger than its
capacity. For example, the sediment capacity will be large if the
droplet is moving down a steep slope and contains a lot of water.
A deposit of sediment is made by decreasing the droplet’s sedi-
ment and distributing it over the surrounding vertices (i.e. increas-
ing the height of the vertices). Erosion is performed by decreasing
the height of the surrounding vertices and adding to the sediment
carried by the droplet. Finally, the droplet’s speed is updated and a
fraction of its water is evaporated according to eq. 3 and 4, where
pevaporation ∈ [0, 1], hnew and hold are the new and old heights
and gravity is an adjustable parameter [Beyer 2015].

speednew =
√

speed2old + (hnew − hold) · gravity (3)

waternew = waterold · (1− pevaporation) (4)

This process is repeated for a set number of iterations by defining
the number of raindrops wanted for the erosion.
In order to perform better erosion, the number of surrounding nodes
affected is based on a parameter called the erosion radius. Before
performing the hydraulic erosion described above, each vertex in
the landscape is assigned a number of surrounding vertices based
on this radius. These will be affected and to different degrees when
a drop erodes around a certain vertex.

3.2 Texturing and Shading

Our shading was applied fully in the fragment shader. Diffuse light-
ing was used for illuminating the scene and different colours were
blended to apply texture. For blending the colours of the mountains,
we used the built in OpenGL method mix, that takes two colours
and one value between 0 and 1 that determines the weight of each
colour. First, we blend between a grey and a green, depending on
the altitude and steepness of the fragment. A high steepness and
a high altitude will result in a less green and more grey fragment
colour, which simulates the growth behaviour of grass.

To make the scene more diverse and less uniform, we mix in a
brown colour to parts of the grass, using noise again.

On the top of the highest peaks there is snow colouring, which is
based on the height of the fragment. Above a certain height thresh-
old, the white snow colour will be blended into the grey mountain
colour. The height that determines whether to place snow and how
to blend it is based on a noise map but lies between certain bound-
aries. This helps avoiding having the snow blend the same every-
where which looks unrealistic, see Figure 1.

mike
Highlight



(a) Snow without noise (b) Snow with noise

Figure 1: Snow generation

To make the surface look less smooth, we added a normal map
that was made for shading a rocky surface. Finally, to place the
mountain landscape within a context, a simple skybox was used
based on the code written in the previous course EDAF80.

4 Results
For our final mountain picture, we used a mesh with a width and
height of 1000 units and 1000x1000 vertices. The hydraulic ero-
sion was implemented on the CPU. The parameters of the hydraulic
erosion were manually adjusted to give a good looking result.

The calculation of 600,000 raindrops on a laptop with an Intel
Core i7-9750H CPU with 2.60GHz takes 19.6 seconds.

Figure 2: Mountain image without hydraulic erosion and normal
map

Figure 3: Final mountain image with all mentioned improvements

5 Discussion
The hydraulic erosion makes the surface more rough and therefore
more realistic looking.

Real mountains consist of different materials that have different
erosion properties, e.g. massive rocks will not erode nearly as much
as soil. One could therefore think about adding different erosion
properties to different parts of the map.

While the computation of the landscape takes almost 20 sec-
onds, hydraulic erosion and landscape generation often only needs
to be performed once during development when one wants to get
a heightmap that is then saved for later use without computation.
Instead of calculating the hydraulic erosion on the CPU, perform-
ing the calculations on a GPU using a compute shader could have a
positive impact on the performance. Here, parallelization could be
used to improve performance.

Concering the realism of the landscape, there is much room for
improvement. To give a more realistic look, one can add fog, water,
better textures or generate plants such as trees.

6 Conclusion
In this report we have explored the possibilities of a specific hy-
draulic erosion implementation and discussed some techniques to
make the landscape look more realistic.

There is also an inherent challenge in a project like this where the
objective measurements are restricted to how long the computations
take while there is no clear answer to the subjective question ”Is
this a good-looking mountain landscape?”. There are many ways
to tune parameters in this project, such as the number of raindrops
and the gravity for the hydraulic erosion, but also which colours
and which normal maps to use for the shading.

References
BEYER, H. T. 2015. Implementation of a method for hydraulic

erosion. Bachelor’s Thesis in Informatics: Games Engineering,
The Technical University of Munich.

LAGUE, S., 2019. Coding adventure: Hydraulic erosion.
https://www.youtube.com/watch?v=eaXk97ujbPQ. [Accessed
2020-12-12].

MCGUIRE, M., 2014. 1d, 2d 3d value noise.
https://www.shadertoy.com/view/4dS3Wd. [Accessed 2020-12-
12].


