
Raytracer with spatiotemporal reprojection
Martin Jakobsson*

Lund University
Sweden

Abstract
A raytracer has been implemented together with two denoising
techniques: multiple samples per pixel and accumulation. To com-
pensate for camera movement and rotation, spatiotemporal repro-
jection was used in the accumulator. The compensation worked
well for diffuse surfaces, but not as well for reflective and refrac-
tive surfaces. The accumulation technique was cheaper than the use
of multiple samples per pixel. The application was able to run in
real-time with reasonable quality.

1 Introduction
In computer graphics rasterization is the most common rendering
technique for real-time applications. There are however limitations
to rasterization making it less suitable for rendering objects with
reflections and refractions as well as global illumination. Raytrac-
ing is an alternative that doesn’t have these limitations. There are
however a few problems with raytracing, one of which being the
rendering time needed to reach a good quality image. For a real-
time application the rendering time allowed is limited, resulting in
lower quality and a noisy image. The noise can be reduced with
different denoising techniques, one of which is accumulation. To
compensate for camera movement spatiotemporal reprojection can
be used. These are the techniques implemented in this paper.

2 Application
The program uses raytracing to draw a simple scene. The output
from the raytracer is then used in an accumulator, which can be
seen in figure 1. The accumulator uses the data from the raytracer
together with data from the previous frame to determine the final
color. To adjust for camera movements spatiotemporal reprojection
is used (more on that in section 2.4). The raytracer outputs both the
color of the light entering the camera, as well as the distance to the
closest object. This data is needed in the reprojection step in the
accumulator.

2.1 Raytracer
The raytracer runs entirely on the GPU in a fragment shader written
in GLSL. The scene to be rendered is hard coded into the shader and
contains three spheres, a plane and a spherical light source. When
a ray hits an object the ray will bounce in one of the following
ways: diffuse reflection, specular reflection or refraction. Much of
this code is based on an article called Ray Tracing in One Weekend
[Shirley 2020]. More specifically the diffuse reflection is based on
section 8.1, the specular reflection is based on section 9.6 and the
refraction is partly based on section 10.

While the ray bounces around in the scene it remembers a color
multiplier accumulated from the previous bounces. This multiplier
can be seen as an RGB color filter, and is used when the ray hits a
light or any other light emitter. The light color will then be multi-
plied by the multiplier before contributing to the pixel color. This
is what gives color to the objects.

There is also a possibility to make refractive materials absorb
light, which means that the color multiplier described above is
affected by different amounts depending on the distance traveled

*e-mail: ma5210ja-s@student.lu.se

Figure 1: The dataflow between the raytracer and the accumulator.
The D-boxes delay the input one frame.

through a medium. The color multiplier is multiplied by αd where
0 ≤ α ≤ 1 and d is the distance traveled since the last bounce.
Each object has an α value for each RGB component.

The physics implementation described above is not completely
correct, but it is good enough for this demonstration.

For each pixel the ray performs at most 8 bounces and outputs
the final pixel color as well as the distance to the first object en-
countered by the ray. The output (color) can be seen in figure 2.

Figure 2: The output of the raytracer with 1 spp.

2.2 Denoising
If the raytracer output is used as is, the resulting image will contain
large amounts of noise. This is mostly due to the random nature of
diffuse reflection. To make the image less noisy the ray tracer is run
several times and the resulting images are averaged to get the final
image. To further reduce the noise, each run of the ray tracer uses
a different point within the pixel. This can be seen as performing
anti-aliasing. The resulting image can be seen in figure 3 where 8
samples per pixel were used.



Figure 3: The output of the raytracer with 8 spp.

2.3 Accumulator
Using multiple samples per pixel does decrease the noise, but has
diminishing returns, which makes it too computationally expensive
for a real-time application. Another way of reducing the noise is
to reuse the images from the previous frames. This can be done by
using e.g. 90% of the previous frame and adding 10% of the new
frame for each pixel. The resulting image can be seen in figure 4.

Figure 4: The output of the accumulator with 1 spp.

This simple solution works very well as long as the objects are
static and the camera doesn’t move. Since this is a real-time ap-
plication the camera could certainly move, which results in severe
visual artifacts as seen in figure 5. This movement can be adjusted
for using spatiotemporal reprojection.

Figure 5: Blur caused by camera rotation if no compensation is
performed.

2.4 Spatiotemporal reprojection
When the accumulator adds the new pixel value to the value from
the last frame it uses the same pixel coordinates for the new and the
old data. To adjust for the camera movement we need to find the
coordinates in the old image that correspond to the same point in
space as the current pixel in the new image. This can be seen in

figure 6 where the world is seen from above and the blue lines end
up at different pixels depending on the camera.

To find these coordinates we first need to find the point in space
for the object, i.e. the point where the blue ray hits the green oval
in figure 6. The direction can be calculated using the inverse view-
projection matrix for the new camera, and together with the dis-
tance (from the ray tracer) the ray can be extended to the appropri-
ate length. This gives P = Cnew+vtwhereCnew is the position of
the new camera. The world position of the object can then be trans-
formed using the view-projection matrix of the old camera. This
gives the screen coordinates for the old camera.

There is one slight problem left to address: as seen in the figure
the red line finds a point that was hidden from the old camera. This
means that the accumulator will use the color of the small oval in-
stead of the big oval. Since the correct color is not present in the
old image the accumulator should simply ignore it and only use the
value from the ray tracer.

To find out that the object is being obscured we calculate the
distance to the object from the old camera and compare it with the
previous distance value from the raytracer (see figure 1). The dis-
tance to the point is simply calculated as the distance between the
point and the old camera position. If these distances differ too much
the accumulator only uses the output from the raytracer.

The implementation of the spatiotemporal reprojection tech-
nique was inspired by an implementation on Shadertoy [Raxvan
2016], specifically the mainImage method in Buffer B where the
actual algorithm is implemented.

Figure 6: Spatiotemporal reprojection

3 Results
The final results can be seen in figure 7 where the accumulation
technique is combined with multiple samples per pixel.

As stated before, the raytracer can handle refractions and reflec-
tions, which can be seen in figure 8 where the ground has been
replaced with a checkerboard pattern and the camera is looking
through a slightly blue glass sphere. A green sphere and a blue
sphere can be seen through the glass, where the blue sphere is par-
tially refractive. This image was generated with the same quality
settings as figure 7.

The performance of the raytracer depends on the number of sam-
ples per pixel as well as the window size. With 8 spp and a 720p
window size the application ran at several frames per second on
an integrated graphics card (Intel HD Graphics 520), which would
likely be much higher for new GPUs and even higher for discrete



Figure 7: The output of the accumulator with 8 spp.

Figure 8: Refraction through tinted glass with a checkerboard
ground. The sphere to the right is partially refractive.

GPUs. With fewer samples per pixel the performance was greatly
increased.

4 Discussion
The quality of the image in figure 7 is noticeably better compared
to only using one of the techniques. This increase in image quality
comes at a price: it takes more time to render a frame. When using
8 spp the scene is drawn 8 times to get one frame, so the rendering
time is expected to be 8 times higher. The accumulation technique,
on the other hand, only needs one pass of the raytracer and an extra
pass for the accumulation, which makes the accumulation technique
much cheaper.

There is however a downside to the accumulation technique: the
image can potentially contain visual artifacts from old frames. This
problem is greatly reduced with spatiotemporal reprojection, but is
not completely removed.

It should also be noted that there are several possible improve-
ments to this raytracer. One possible improvement is the following.
When the accumulator cannot use the data from the previous frame
it will only use the new raytracer output. This makes the regions
close to the edges of the objects noisy, which could be compen-
sated by running the raytracer again for those regions. This would
make sure that all parts of the image are based on data from multiple
passes of the raytracer.

4.1 Limitations
As previously stated, spatiotemporal reprojection doesn’t work well
with reflections and refractions. The reason is that it assumes that
all objects will look the same regardless of the viewing angle. This
is true for diffuse materials and objects with textures, but not for
specular reflections and refractions. This can be partly compen-
sated for with a more advanced technique, but not with the tech-
nique implemented in this application. This makes reflections and
refractions a major limitation to the spatiotemporal reprojection
technique.

5 Conclusion
The accumulation technique combined with spatiotemporal repro-
jection is able to produce an image with the same quality as an
image created using multiple samples per pixel, but with higher
performance, making it suitable for real-time applications.

References
RAXVAN, 2016. Temporal reprojection, August. https://www.
shadertoy.com/view/ldtGWl.

SHIRLEY, P., 2020. Ray tracing in one weekend, De-
cember. https://raytracing.github.io/books/
RayTracingInOneWeekend.html.

https://www.shadertoy.com/view/ldtGWl
https://www.shadertoy.com/view/ldtGWl
https://raytracing.github.io/books/RayTracingInOneWeekend.html
https://raytracing.github.io/books/RayTracingInOneWeekend.html

	Introduction
	Application
	Raytracer
	Denoising
	Accumulator
	Spatiotemporal reprojection

	Results
	Discussion
	Limitations

	Conclusion

