
Using marching cubes with noise to generate complex surfaces
Filip Bergman* Mathias Bothén†

Lund University
Sweden

Abstract
In this project the marching cubes algorithm was implemented and
used in different ways. It was found that the algorithm can be
used to create a wide variety of surfaces, from a sphere to a terrain
with mountains. Another observation was that Perlin-noise could
be used to create real life like terrains. It was also observed that
using the processor to perform the marching cubes algorithm is rel-
atively slow, compared to what is possible with the GPU, since it
does these calculations much more efficiently. This results in the
program being slow to start up, but once the cubes have been gen-
erated it is just as fast.

1 Introduction
In 1987 when a healthcare company wanted an efficient way of vi-
sualizing data from CT and MRI devices, a research team devel-
oped an algorithm that took a 3D discrete scalar field and created a
polygonal mesh of an isosurface. This algorithm was named march-
ing cubes and was however not only useful for medical purposes,
but also 3D modeling, since almost any structure can be made with
it. In later years this algorithm has been used in many different
ways, one being terrain generation by combining this algorithm
with noise.

In this project the main goal was to implement the marching cube
algorithm and later use it to generate complex surfaces, such as ter-
rain. This was done by using Perlin-noise. This subject was ex-
plored since the possibilities of the marching cubes algorithm with
noise are endless. It is possible to generate endless worlds using
these techniques and one example of this is Minecraft’s world gen-
erating algorithm, which uses 3D noise to create its terrain.

This project was built upon the framework from the first course
EDAN80, Computer graphics.

2 Marching cubes algorithm
The first algorithm that was implemented was the Marching Cubes
algorithm. This algorithm proved to be quite challenging to im-
plement. A guide with code was found that both implemented the
algorithm on the CPU and the GPU. The GPU version was a bit
to challenging for the scope of this project since noise and terrain
generation also was to be implemented in this project.

How the marching cube algorithm works is that it creates one
big cube consisting of an arbitrary amount of voxels, in this case
32x32x32 voxels. These voxels are small cubes themselves. Within
each of these voxels the algorithm will check each of the 8 corners
to see if they are inside or outside of the input surface, and sets
a value at each corner, 0 if outside and 1 if inside of the surface.
These values are then concatenated which will give a value from 0
to 255. This means that if the whole voxel is inside or outside of
the surface, i.e if the concatenated value is 0 or 255 respectively,
nothing has to be done in this voxel. If this value is 1 to 254 how-
ever, it means that 1-7 corners are inside the surface and that part
the surface should be drawn in this voxel. This is done by covering
the corners that are inside the surface with polygons as can be seen
in figure 1. Since there are 8 corners, there are 28 = 256 different

*e-mail: fi5731be-s@student.lu.se
†ma6728bo-s@student.lu.se

Figure 1: The 14 unique polygon structures.

combinations, but only 14 unique ones, the ones showed in figure
1, the other ones are just rotated versions of these 14. To sum it up,
the algorithm iterates over each voxel inside the box(32x32x32 =
32 768 voxels) and generates polygons if the surface intersects with
that voxel, otherwise it does not generate anything in that voxel
[Nvidia 2020].

The first step taken to implement the marching cubes algorithm
was to create the edge and triangle lookup tables. The edge table
consists of each unique constellation of edges that have a vertex of
a polygon positioned on them. The triangle lookup table consists of
all the 256 different voxel constellations. These tables were found
online, along with the algorithm that takes the concatenated corner
value along with some other parameters and maps it to the right
polygons that should be generated [Bourke May 1994].

The second step after this was to implement the code that iterates
over all the voxels. The solution to this was a modified version of a
solution found online [Halayka 2020].

The result of this first implementation is shown in figure 2 and
had random values as input. After applying some diffuse shading
and adding a texture to the polygons, as well as using the mathe-
matical formula for distance in 3D from the center of the cube as
the surface, a sphere could be generated as seen in figure 3.

3 Terrain generation
Creating terrains using marching cubes has the advantage of being
very flexible. Once created, simple tweaks to numbers can change
the density of the terrain, creating more/less caves or maybe moun-
tains. The flexibility comes from the fact that the world has a bunch
of values scattered evenly across(described in the marching cube
algorithm). Depending on one value, this part of the world is either
inside or outside the terrain. Outside meaning air. The threshold
that decides what values are inside the terrain can be changed in
real time and modified to a suitable number.

To create a terrain, each point around the world would simply



Figure 2: Marching cubes with a simple shader and randomized
values.

Figure 3: A sphere generated with marching cubes algorithm, with
a relatively low resolution.

have to be filled in with values. However these values must have
a pattern that mimics the real life terrain. One could go in and
manually place the values but this would take ages and is not very
practical and since an infinite terrain as well as being able to change
it in real time was an aim of this project. Thus another way generate
terrain had to be found.

3.1 Noise
Noise is a way to generate psuedo-random values that have a more
natural/harmonic succession of numbers. The human eye is very
good at picking up on patterns and can easily tell the difference
between something that is totally random and something that has a
small pattern. This was first created by Ken Perlin and was aptly
named Perlin noise. He created this in response to his frustration
of how computer generated imagery looked so machine made back
in 1983. Noise can come in different structures, mainly in which
dimension it is made. A noise can be made in any dimension, but
most useful to this terrain generation are Perlin noise in 2d as well
as 3d.

Different dimensions of noise have to be interpreted in different
ways depending on its application. The application of 2d noise in
a terrain is often most simple since it can be used as a height map
where higher values mean that part of the terrain is higher up in the
air while lower values mean its lower. This could be compared to
maps where density of lines mean steeper cliffs and hills. The use
of 3d noise can be quite abstract, but as already described, these
values can be used to determine whether or not a part of the world
is part of the surface/terrain.

3.2 Implementation of terrain
To create the noise, a pre-built library by Ryo Suzuki was
used[Suzuki 2020]. This was easy to implement and had functions
ready to be used. While 3d Perlin noise is very useful, the result
of its values look nothing like a terrain or anything realistic. Be-
cause of gravity, there is a higher likelihood that parts further down
are part of the surface and parts higher up are part of the air. This

Figure 4: First iteration that started to look like a terrain.

was implemented by having parts below a certain level(an average
surface height) get lower values, meaning higher chance of being
inside the surface, and parts that are above this level have higher
values meaning a bigger chance of being outside the surface. This
allowed the surface to be more flat as can be seen in figure 4. This,
although much more like a terrain, was way too smooth and round.
To make this more realistic, it had to be a bit more jagged/uneven.
This was done by sampling from the noise multiple times at dif-
ferent places and then adding the values together, but with every
iteration they had less and less impact. This way, the big hill shapes
were still preserved, but they had more detail on them. A problem
became clear that there was a maximum height of mountains/hills
and a lot of them was the exact same height. To combat this, a 2d
noise was sampled as a height map so that certain areas would get
higher altitude. However this removed some of the caves and over-
hangs so the impact of the 2d noise had to be tweaked so there was
still caves while also having taller mountains.

4 Other additions
After a marching cubes chunk could be generated to look like a ter-
rain, improvements were made to the general gameplay experience.
A chunk is relatively tiny and if one were to fly around the world
then they would come to the ”edge of the world”. To fix the prob-
lem of the map being too small, several chunks were added to build
a 4x4 chunk array. Every chunk sampled from the 3d noise using
their world coordinates and since the chunks laid next to each other,
it created a smooth transition so that the world continued. To stop
a player from falling off the edge of the world, the terrain would
have to follow them around. Once they got too close to an edge, the
chunks would move one step in the direction of the player, mak-
ing sure that the player was always around the center of the terrain.
This also meant that the world was now infinite and the player could
explore in any direction.

5 Results
After the marching cube algorithm and noise algorithms had been
combined, as well as some tweaking with some parameters in the
noise to make the terrain look more realistic or just more aesthetic.
Some sliders were also added to the GUI to enable testing different
mountain heights, frequency, detail and similar.

The aesthetic additions made were things like changing the tex-
ture to a rock texture if the dot product between the y axis and the
normal of the triangle was above a certain value, making it look like
grass cannot grow on vertical surfaces. Water was also added at a
y = 0 and it was made transparent so that terrain below it could be
seen. Below this level as well as a tiny bit above, a sand texture was
added to create nice looking tropical beaches. Also above a certain
y value a snow texture will be used if the dot product of the nor-
mal and y axis is above a certain value. The rock texture was also
used in case the terrain was above a certain height so that moun-
tains would not have any grass on them. If none of these textures



Figure 5: Final terrain.

are used then grass will be used. A skybox was also added to create
a nicer atmosphere. The result of these aesthetic additions can be
seen in figure 5.

Tweaking the surface level to be lower allowed for the terrain
to display more water and gave a look of a tropical place while
increasing the surface level added more mountains and snowy hills.

6 Discussion
Even though there were a lot of algorithms and aesthetic additions
made, this is a project with infinite possibilities. However before
any additions should be made, the most important thing to do would
be to change the marching cube algorithm calculations to the GPU
instead of the CPU.

6.1 Improving performance
This would enhance the experience greatly since now when the
player goes to an edge chunk, all 4x4 = 16 chunks have to be
calculated again, which takes some seconds for the CPU, which
freezes the program. This transition would be seamless with the
GPU. Moving the calculations to the GPU is simple in theory. A
compute shader would be used to do the exact same calculations
but the difficulty lies in sending the data back and forth between
the CPU and GPU. This information can only be passed by using
images but figuring out a way for both to read and interpret the data
they are given is difficult. Couple days of testing later and progress
was given up, simply too big of an undertaking. Implementing this
would be easier if it was done from the start. Another addition that
would further improve performance would be to only generate the
chunks that are new and not the ones that have not changed when
the player moves around. There is also the fact that every triangle
have their own 3 vertices and even though they overlap with other
triangles new vertices are created and many vertices are in the exact
same place. A way to solve this would be to use indices to connect
triangles to unique vertices, however the math to solve this problem
is very confusing because of how the triangles are generated in al-
most random order and could be connected with any other random
triangle.

6.2 Terrain variation
At the current state of the project, every new chunk generated has
the same parameters as the other ones, which makes the terrain
look very repetitive. What could be added here are biomes/climate
zones. For example for some chunks, the terrain will be mostly flat
plains with grass and some lakes, and for other chunks, high moun-
tains with snow. In the future it would be interesting to try to apply
this solution to a sphere and make whole planets.

One thing that was attempted was to create caves by modifying
the 3D noise function, however it proved to be quite difficult. There
was always a trade-off between the caves and above the water level.
If the caves worked, the mountains looked off, and the opposite.
It was decided that the above surface was more important to focus
on for this project although there is still a possibility for caves and

overhanging cliffs, the numbers just have to be tweaked correctly.

7 Conclusion
In conclusion, this project has been very interesting and fun to de-
velop and something we want to further work on after this course.
There are still so many improvements that can be made that we
could spend weeks to solve, however we would not mind since the
results are so intriguing.

References
BOURKE, P. May 1994. Polygonising a scalar field.

HALAYKA, S., 2020. julia4d3. [Online; accessed 13-December-
2020].

NVIDIA, 2020. Gpu gems 3: Chapter 1. generating complex pro-
cedural terrains using the gpu. [Online; accessed 13-December-
2020].

SUZUKI, R., 2020. Reputeless/perlinnoise. [Online; accessed 13-
December-2020].


