
Cartoon Outlines - Project in High Performance Computer Graphics,
EDAN35
Carl Rutholm

Lund University
Sweden

Abstract
This project explored the idea on how to make 3d objects
and characters look like cartoons. The goal was to make sure
that the objects have well defined outlines as well as defini-
tions to show edges. This was done by implementing two
edge detecting algorithms. One uses depth and the other uses
normals to determine edges. Using both to complete each other
gave good results with thick lines along edges and some definitions.

1 Introduction
For living beings equipped with visual systems, such as humans
and human sight, it is no problem to identify shapes and hard edges.
Simply by using our senses we can differentiate between a flat,
curved and edged shape. For computers however this is very tricky
without being armed with the right tools. For a computer that only
sees values read from texels and pixels, it sees the different values
but not how to interpret them. For this we can provide computers
with different algorithms to decide what the values represent. This
project explored Sobel and Normal detection algorithms.

2 Algorithms

2.1 Sobel operator

The Sobel operator is an algorithm (sometimes called Sobel Filter)
used in computer vision and image processing often for edge detec-
tion. The idea is to provide the computer with matrices that it can
use to sum up a block of pixels row by row and, by observing the
result, determine if its an edge or not. The matrices provided to the
computer can vary but two common ones are shown below as sx
and sy.

The Sobel operator is based on an image’s gray scale values. In
this project the distance from camera to object was fetched to be
used instead of gray scale values. Since both grays scale and a dis-
tance are values it can be used similarly. By grouping a selected
pixel and its adjacent pixels into a block (in our case 3x3) the frag-
ment shader can traverse it and perform matrix multiplication with
a matrix. This block can be called A. We traverse in x and y di-
rection separately using the corresponding sx and sy matrix. The
result for each direction should be a 3x1 matrix called Gx and Gy
depending on which way the traversing has been done. By adding
all the rows into a final result we can observe and draw conclusions.
Ideally the result for summing each row should be 0 if there is no
edge and not 0 if there is an edge. However since this is rarely the
case with the values a threshold value can be set to let every result
that is over the threshold pass as an edge and everything under the
threshold pass as not an edge. If it passes as an edge the output
color is set to black. If not the color set to the passed in diffuse
color. This operation is done on all pixels in the fragment shader
before the final image is rendered. See appendix 8 for pseudo code
of the implementation.

sx =

1 0 −1
2 0 −2
1 0 −1

.

sy =

 1 2 1
0 0 0
−1 −2 −1


A = fetched 3x3 block of texels
sx ∗A = Gx
sy ∗A = Gy
G = Gx[0] +Gx[1] +Gx[2] +Gy[0] +Gy[1] +Gy[2]

2.2 Normal operator

This operator was designed to detect edges by looking at the normal
difference on adjacent texels similar to the Sobel Operator. The se-
lected texel’s normal is first fetched and then the surrounding texels
normals are fetched one by one and compared to the selected texel’s
normal. If the angle between the compared normals are bigger than
a set threshold there is a chance that an edge has been detected.
In this case a tracker variable notes it by adding 1 to itself which
means that this comparison detected an edge. If the angle ends up
not being bigger than the threshold the tracker variable notes this
by adding a 0. In the end when all the comparisons has been made
in the block, the mean value of the tracker variable is compared to
a threshold to output a black or original output color. See appendix
9 for pseudo code of the implementation.

3 Results

Without any operator active



Normal operator active

Sobel operator active

Both Sobel and Normal active

4 Discussion
When observing the results it becomes obvious that for some an-
gles the operators have problems to distinguish an edge and this is
mainly because of the thresholds that are hard coded in the shaders.
The threshold was experimented on by simply trying different com-
binations and angles and because of this the thresholds are the
biggest factor for errors and unwanted results. Close ups were very
pleasing however and showed really good results so camera dis-
tance is also something to consider when trying to perfect these
operators. If more time was spent on trying to figure out a bet-

ter solution or experimenting further to optimize the thresholds the
results might have differed for the better.

Another factor was the size of the blocks used to compare the
depths/normals. If one were to use smaller blocks the precision
might have been better but might also suffer from not having
enough information about the surroundings. Using too large blocks
results in weaker performance and chunkier movements if one is
interested in making a controllable experience.

Since I was alone working on this project I could not manage to
implement everything I wanted. My plan was to implement more
rugged outlines and sketched shadows that uses hatching if I got
time over after the main idea was finished. I also wanted to make
this into a smaller game where the objective was to put color on all
the intractable objects in the scene and to have the color fade in from
the players touch all over the object. The objects are intractable
right now and the player has simple move controls with a fixed
camera as well as a free cam mode. Sadly there was no time to
implement this fading coloring method either.

5 Conclusion

The goal for this project was to create well defined outlines and
definitions on object using Sobel and Normal edge detecting algo-
rithms. The results shows that this goal was accomplished mostly
but with a bit of fine adjustments to perfect it. Observing the dif-
ferent operators individually one can see their strenghts and weak-
nesses. For instance the normal operator for most scenes and angles
since it’s looking at the normals but is at the same time a weak op-
tion when looking at objects with the same angles and normals.
This is where the sobel operator’s strength takes over and can com-
pare depths and detect edges on objects with the same normal angle.
Both are good in its own but working together gives the best results.

Other than implementing I got experience in the 3D model pro-
gram Blender where I created the playable character and the plat-
form which I really enjoyed. Further experience and knowledge in
OpenGL, shaders, textures and samplers and c++ is also something
Im taking with me from this project.

6 Appendix

Image 5



Image 6

Image 7: Creating character in Blender

Image 8: Pseudo code for the normal operator

Image 9: Pseudo code for the sobel operator


