
Water Caustics and Water Simulation
Linus Jacobson
Lund’s University

Faculty of Engineering
Sweden

Email: li7414ja-s@student.lu.se

Arne Stenkrona
Lund’s University

Faculty of Engineering
Sweden

Email: ar8058st-s@student.lu.se

Abstract—This paper describes an implementation of an ap-
proximate simulation of water caustics and water simulation
based on an article by Martin Renou [2]. By generating a caustics
light map that can later be applied to underwater geometry,
caustics light-effect can be generated. The simulated solution
worked well but the shadow caused by objects underwater were
somewhat immersion breaking as the moving water didn’t effect
the shadows of said object.

Fig. 1. Render of the scene with caustics.

I. INTRODUCTION

Fig. 2. Water caustics in real life. [5]

Fig. 3. Water caustics are caused by convex areas of the water surface
converging light, and concave areas of the water surface diverging light.

A. Caustics

When light passes through a refractive surface with varying
geometry the surface will act as a lens. At convex areas of the
surface light will converge and whatever surface lies beyond
will receive a concentrated amount of light and will appear
brighter. The converse is also true, where a concave area will
cause divergent light and darken the surface beyond [1]. This
is particularly noticeable in water, as can be seen in figures 2
and 3

B. Simulating Caustics

In order to increase the level of realism in a 3D scene it
is useful to reproduce optical phenomena that occur in real
life. Simulating accurate water caustics can be tricky, however,
especially in real time graphics. Due to the cost of calculating
photons leaving a light source, scattering through water, often-
times good looking but not accurate approximations are used
instead [3]. A simple approximation could be sampling from
an predefined water caustics animation texture, but that can
be immersion breaking as the way the water moves doesn’t
affect the caustics.

This paper goes through an in-between of a predefined water
caustics animation, and real photon simulation; sacrificing
accuracy for performance, but maintaining immersion. On top
of that it goes through interactive water simulation, creating
waves by clicking on the surface. This implementation is based
on a methoud outlined by Martin Renou [2].



II. ALGORITHMS AND PIPELINE

Fig. 4. Overview of the pipeline stages to render simulation.

In figure 4 we can see the pipeline stages. The frame begins
by updating the water simulation which is stored in a texture.
This is followed by a shadow map pass for all underwater
geometry. The environment map and caustic maps are both
crucial in order to apply the caustic effect, as we will see.
Once the shadow map and caustic map is prepared we render
the underwater scene into a refraction texture along with
its reflection into a reflection texture. The final composition
stage renders the underwater scene again, along with water
which uses the underwater refraction and reflection textures
to compute its refractive and reflective colours.

A. Water Simulation

Our water simulation is based on the method used by Martin
Renou in [2]. We simulate water by using a 2D texture with
four 32-bit floating point colour channels (rgba). Each pixel
describes the state of water at that point (u, v), u, v ∈ [0, 1] at
time tk, k ∈ N with the r-channel representing water height
hu,v,k, g representing water velocity magnitude wu,v,k, and
b and a representing the x and z component of the surface
normal nu,v,k. The y component of the normal is only stored
conceptually as it is easily reconstructed from its x and z
values. Initially we set

hu,v,0 = 0

vu,v,0 = 0

nu,v,0 = (0, 0, 0)

In each time-step tk, k > 0 we update as follows:

vu,v,k = λ · (vu,v,k−1 + 2 · (mean4(vu,v,k−1)− hu,v,k−1))

hu,v,k = hu,v,k−1 + vu,v,k

where λ is the attenuation and

mean4(vu,v,k−1) =
1

4
(vu+dx,v,k−1 + vu,v+dy,k−1+

vu−dx,v,k−1 + vu,v−dy,k−1)

is the mean of 4 height samples sampled at (u± dx, v ± dy)
for some (dx, dy) ∈ R2. The normal nx is set to the normal of
the triangle defined by hu,v,k, hu+dx,v,k−1, and hu,v+dy,k−1.

Water droplets are added to the texture upon user interaction
by adding

s

2
(1− cos(πmax(0, 1.0− dist

r
)))

to the height of each pixel, where s is the droplet strength,
dist is the distance between the pixel and droplet center, and
r is the droplet radius.

B. Shadow Map

Creating shadows using shadow maps generated from the
perspective of the light, using an orthogonal perspective ma-
trix, shadows can be emulated. The shadow map is generated
by sampling the depth values from the light PoV, resulting in
a image with output range of [0,1], where 0 is the z-nearplane
and 1 is the z-farplane. This texture is later then passed as a
uniform to be sampled in the fragment shader whilst rendering
the final scene. Said pixel in the fragment shader is then
transformed to world coordinates to later be compared with
the shadow map to see if it is in direct sunlight or not, and
then shaded accordingly [4].

C. Water Caustics

Just like for the shadow map, a caustics map is generated
which then is applied to the subsurface objects that face
the light. In order to compute the caustics map, the height
and normal map of the water is needed, as well as an
environment map of the subsurface area from the light’s PoV.
The implementation is based on Real-time rendering of water
caustics by Martin Renou [2]. We’ve divided this into two
steps in our pipeline.

1) Environment map: In order to compute caustics we
need to intersect light rays with the underwater scene. For
performance, we delegate this to the GPU. We prepare a
texture containing the world space coordinates of the scene
rendered from the lights point of view. We also store the light
space depth position in the alpha channel. The resulting texture
is our environment map.

Fig. 5. The vertex shader refracts triangles through the water resulting in some
triangles increasing in area and others decreasing in area. The area change
tells us how the light intensity is affected by caustics.

2) Caustics map: We simulate a wave-front of light passing
throw the water in a vertex shader. We feed in each vertex from



the water mesh, compute the refracted light ray from the sun
and intersect it with the environment map. This can be done
by tracing the ray in increments, comparing the environment
map depth value with the rays current distance from the light
source in order to determine intersection. This will transform
the triangles and either increase or decrease their respective
area. An increase in area tells us that light diverged and
we should not expect an increase in light from caustics. A
decrease in area tells us that the light converged. This is
illustrated in figure 5. In a fragment shader we colour in bright
values for converging light and dark values for diverging light.
The resulting image is a light-space representation of caustic
light contribution to the scene. This can be sampled when
rendering the underwater scene by computing each fragment’s
corresponding light space position.

D. Underwater Scene Refraction

We render the underwater scene using regular phong light-
ing. For shadows we sample from the shadow map using each
fragments light space position as sample coordinates. Similarly
we sample from the caustic map in order to determine caustic
light contribution. This render pass is stored in the underwater
scene refraction texture.

E. Underwater Scene Reflection

Fig. 6. A mirrored camera reveals what a regular camera sees in a reflection.

In order to render reflections we mirror the camera about
the water plane and render the subsurface scene into a texture,
as seen in figure 6. This render pass is stored in the underwater
scene reflection texture.

F. Composition

We begin by once again rendering the underwater scene as
we did when generating the underwater scene refraction tex-
ture. Next, we render the water surface, computing the amount
of refraction and reflection, each of which will contribute to
the waters final colour.

In order to determine the refraction colour we will compute
refraction vectors which will be used to determine how to
sample from the underwater scene refraction texture. The re-
fraction vector is calculated from the light incident vector and
the water normal three times with slightly different refractive
indices. To sample from the texture, we use the three refraction

Fig. 7. The blue, yellow, and red edges highlight the chromatic aberration
effect.

vectors. We estimate the vector’s collision with the scene by
assuming that all geometry is of a constant distance from the
water surface and transform it to camera clip space and in
order to sample the subsurface texture. While the sampling is
physically incorrect it is convincing enough. The three colour
values are blended together to form the refracted rays colour
contribution with a chromatic aberration effect, showcased in
figure 7.

To determine the reflective colour we will read from the
underwater scene reflection texture. The view-port coordinates
are used as sample coordinates, with a heuristic offset based
on the simulated water normal in order to provide convincing
distortion to the reflection. Again this is incorrect, but con-
vincing enough.

Refraction and reflection colours are blended together to
produce the water surface final colour.

III. RESULT

A. Caustics and Shadows

When we add movement to the water, caustics patterns
begin to appear on the subsurface geometry. Rings can be
seen on the water, which can also be found in the caustics
pattern on the water floor (see figure 8).

Fig. 8. Left: Waves are flat — Right : Waves move and caustic light effects
appear on subsurface geometry.

However, there are issues with rendering the shadow map
separately using just a depth map, and it is apparent when
there is movement on the water and we watch the shadow
generated by the beach ball (see figure 9. It is not effected by
the waves. )



Fig. 9. Shadows rendered under the surface

B. Reflection and Refraction

The water rendered from below can be seen in figure 10.
Interesting to notice that the default case is total reflection
when the water is still. If we add waves we start to see
refracted rays (i.e. see the sky). This is due to rendering from a
water medium and rendering air, whilst in figure 8 we rendered
from air into water.

Fig. 10. Left: Waves are flat — Right : Waves move and the reflection is
distorted.

Fig. 11. Shadows rendered under the surface

In figure 11 we can see the refracted sky, and the line of
total reflection happening. Notice that there is some reflection
in mostly refracted area. You can see the ball being reflected.

IV. DISCUSSION

The result was quite expected, and is quite pleasing to play
with. Since the shadows doesn’t move underwater, implement-
ing some sort of distortion on the shadow map based on
the shape of the water would increase the believably of the
simulation. An ray tracer could be developed in parallel to
compare an accurate simulation versus the approximation.

The reflection and refraction colours of the water are
currently based on a geometry agnostic heuristic. This give
particularly noticeable deviation from a physically correct
model when geometry intersects the water surface, which is
why our scene avoids such cases. The sampling reflection
and refraction sampling could be improved by colliding the
reflection and refraction rays with the actual geometry, using a
similar method to that of the environment map when colliding
light rays for caustic computation. Such a method would
certainly prove more convincing for the more attentive user.

The simulation could be extended to work in an infinite
world, using cascade shadow maps and caustic maps. Although
parts of the pipeline already works with dynamic lights,
allowing complete freedom would be another improvement.

There is also a lot of room for optimisation, such as
calculating the shadow map and the environment map at the
same time. And limiting the calculation to the view frustum so
we don’t spend precision on unseen targets. The underwater
scene is also rendered twice, once for the refraction texture and
once for the composition. One could simply copy the contents
of the refraction texture along with its corresponding depth
values into the composition frame buffer and depth buffer to
improve frame rate.

REFERENCES

[1] Pietro Ferraro, What a caustic! The Physics Teacher Vol. 34 (1996) p.
572

[2] Martin Renou, QuantStack, Real-time rendering of water caustics LINK,
sourced 2020-12-16

[3] Juan Guardado (Nvidia) and Daniel Sánchez-Crespo (Universitat Pompeu
Fabra/Novarama Technology). GPU Gems, Chapter 2. Rendering Water
Caustics. LINK, sourced 2020-12-16

[4] Lunds university, EDAN35 High Performance Computer Graphics. As-
signment 2: Deferred Shading and Shadow Maps LINK, sourced 2020-
12-16

[5] Brocken Inaglory, Caustics made by the surface of water LINK sourced
2020-12-16

https://medium.com/@martinRenou/real-time-rendering-of-water-caustics-59cda1d74aa
https://developer.download.nvidia.com/books/HTML/gpugems/gpugems_ch02.html
http://fileadmin.cs.lth.se/cs/Education/EDAN35/Assignment2/EDAN35_Assignment2.pdf
https://en.wikipedia.org/wiki/Caustic_(optics)#/media/File:Great_Barracuda,_corals,_sea_urchin_and_Caustic_(optics)_in_Kona,_Hawaii_2009.jpg

	Introduction
	Caustics
	Simulating Caustics

	Algorithms and Pipeline
	Water Simulation
	Shadow Map
	Water Caustics
	Environment map
	Caustics map

	Underwater Scene Refraction
	Underwater Scene Reflection
	Composition

	Result
	Caustics and Shadows
	Reflection and Refraction

	Discussion
	References

