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Abstract—This report aims to examine the practicability
and usefullness of an alternative voxel rendering method.
A raytracing traversal algorithm described by Amanatides
& Woo [1] was implemented together with two different ac-
celeration structures. Different use cases like 3D cellular
automata, terrain generation and editing were explored.
The report briefly discusses techniques that have been
used to improve visual fidelity like Blinn shading and am-
bient occlusion. The engine runs on OpenGL and uses some
convenient classes like the FPSCamera from the Bonobo
framework [2].

I. Introduction

Totally destructible and editable worlds can be found in
games like Minecraft. A common approach is to build a
mesh of the terrain surface. However, during a live stream,
Tuxedo Labs showed of their engine for the game Teardown
[3]. The game boosts with totally destructible and physi-
cally simulated environments. A large difference being that
the number of voxels per cubic meter of the game is multi-
plied a thousand fold compared to Minecraft, which would
take the number of triangles closer to or past the number
of pixels.

During the livestream the developers showed off that
the voxels where not actually made up of triangles but in-
stead raytraced through volumetric bounding boxes. They
also refered to an algorithm by Amanatides & Woo, the Fast
Voxel Traversal Algorithm. [1].

When investigating the approach further we found a
number of small youtube channels that where doing some-
thing similar [4]. However, Teardown is the only AA game
we could find to be using the technique.

II. Algorithms

Parallax Mapping

The live stream and youtube videos did not provide too
much detail on the rendering except for the general con-
cept. But somehow, they projected a 3D texture onto its
bounding box. To do that, we have used a technique simi-
lar to parallax mapping. Where each surface pixel is given a
color corresponding to the perspective corrected projected
geometry [5]. The geometry in this case being a 3D texture
of bytes where each byte represents a material. We started
off by projecting the 3D texture on to a single quad by taking
fixed size steps through the texture in the direction of the
view vector, starting from the interpolated uv coordinate.

for i < max_steps:
  vec3 P = vec3(uv, 0) + t * V
  if(!insideAABB(P)) discard
  int mat = int(texture(volume, P).r * 255)
  if(mat != 0) return mat
  t += 0.1 * voxel_size
discard;

(1)

Listing 1: Fixed step traversal pseudo code

Later, in order to be able to move around and into the vol-
ume, we choose to instead project the geometry onto the
back faces of the cube as in Figure  1. This approach was
mentioned by Tuxedo Labs in the live stream [3]. The tra-
versal must still begin from the first intersection with the
volume, which we found by doing an AABB intersection
test.

Figure 1: Perspective aware parallax projection

Grid Traversal

In order to decide which texels are to be rendered, we
implemented two different algorithms in the fragment
shader, fixed step traversal and Fast Voxel Traversal Algo-
rithm, FVTA for short, by Amanatides & Woo [1].

Traversing the grid with a fixed sized step is very easy to
implement. After setting the starting point, direction and
step size, the program can traverse the entire texcoord
space to find the point to be rendered. Stepping a fixed dis-
tance every time creates a poor approximation of the vol-
ume. This is due to some voxel corners being stepped over.
It is also very slow since the step size must be small in order
to remove inaccuracies. We have set the step size to 1/10 of
the voxel size.

To improve the performance and accuracy of the shader,
the Fast Voxel Traversal Algorithm (FVTA) was imple-
mented. Unlike the fixed size step method, each iteration
will step from one voxel to the next voxel along the view
direction. To do that, the algorithm calculates the distance
to the next voxel on each axis. Then it will choose the di-
rection of the axis with the smallest distance and step in
that direction. The FVTA in two dimensions is illustrated in
Figure 2. In three dimesions there is just one more axis to
keep track off, the basics of the algorithm are the same.

Figure 2: FVTA 2D Illustrated [6]

Figure 3 compares the results of the two methods. It can
be seen that FVTA has better accuracy at voxel boundaries.



Figure 3: Fixed step traversal (left) and FVTA (right).

A performance comparison between the algorithms can
be found in Section III - Performance.

Blinn Shading

For shading, we choose to use Blinn shading which is
an alternative to Phong shading [7]. Blinn shading changes
the calculation of highlights, using half-range vectors. This
makes the effect more similar to how the human eye expe-
riences highlights.

The results of the Blinn shading are shown in figure 4.
Without shading it is very hard to see the contours of the
object. With shading, the results are more realistic.

Figure 4: No shading (left) and Blinn shading with reinhard-
jodie tone mapping (right).

Ambient Occlusion

In order to add some further depth to the rendered im-
age we added a crude ambient occlusion. For every pixel
that is close to the edge of a voxel face, we take one sample
in each of the four single-axis directions orthogonal to the
normal. The sample point also contains a small offset along
the normal.

The approach is not at all optimal since it will result in
two points always being sampled inside the neighbour lay-
ing in the direction of the face normal. A better approach
would be possible by doing smarter sample selection or by
using deferred rendering and screen space ambient occlu-
sion.

Figure 5: Standard shading (left) and hard ambient occlu-
sion shadowing (right).

Cellular Automata

Cellular automata in three dimensions is different from
Conway’s game of life in 2D [8], [9], the rules for updating
the cells are much more complicated. Instead of having a
binary state and eight neighbours as in game of life, differ-
ent rules can have different sets of its 26 neighbours being
counted and the number of states is variable. The basic of
a 3D CA rule can be divided into 4 parts .

{survival, spawn, state, neighbour method}

Survival indicates that alive cells will survive if they have
a specific number of neighbours which can be found in the
survival rule, the corresponding is true for the spawn rule
and dead cells. Unlike the possible states in game of life,
dead and alive, when a living cell in 3D cellular automata
is determined to be dead in the next round, it will not dis-
appear immediately, but will perform a state-1 operation
every frame until state goes down to 0, then it will be re-
moved. Moore and Von Neuman are two common neigh-
bour patterns where Moore takes all 26 neighbours into
consideration and Von Neuman only considers the 6 adje-
cent neighbours.

Since most of the possible rules will make cells expand
rapidly or die out, we have to be very careful with the rule
settings. Many interesting CA rules can be found on the In-
ternet. The following images are some of rules that we have
tested and used in the project.

Figure 6: Two CA rulesets, Cloud (left) and Pyroclastic
(right).

Since it is interesting to gain some more insight into the
state of the cells, we added 4 different coloring modes: dis-



tance from center, density, state and position. Basically the
cell information is converted into a color index and sent to
the voxeldata along with a color palette. The color indices
are used to sample the color palette on the GPU in order to
store one byte per voxel instead of 3 floats.

Distance Functions

Distance functions are commonly used in ray marching
to describe different mathematical shapes. In this case, we
have used unsigned distance functions in order to fill the
shapes with material.

By iterating over each voxel in the volume and determin-
ing whether it is within the bounds of a model defined by a
distance function, we can create blocky representations of
some different shapes.

Figure 7: SDF of a torus (left) and of an octahedron (right).

Fractal Brownian Motion

To generate more realistic terrain we use Fractal Brown-
ian Motion (FBM) which was introduced by Mandelbrot
and van Ness in 1968 [10] to add more detail to the perlin
noise. In difference to Brownian Motion, there now exists
a correlation between the iterations. Hurst index, 𝐻  for
short, takes values ranging from 0.0 to 1.0, which control
the raggedness of the motion, the higher the value, the
smoother the path.

When 𝐻 > 1
2 , the covariance funtion is greater than zero,

which means that the changing trends of these two vari-
ables are the same, thus current and previous increments
are positively correlated. When H < 12 , increments are neg-
atively correlated since the covariance 𝐸 is less than zero.
For 𝐻 = 1

2  we have the normal Brownian Motion.

The basic idea of FBM in procedural terrain is to contin-
uously accumulate noise with smaller and smaller ampli-
tude but greater and greater frequency. We decided to set
𝐻  to 1 not only because higher 𝐻  will give a more smooth
and detailed shape, but also construct a self-similarity
when using 𝐺 to scale the amplitude.

float G=exp2(-H)
float frequency = 1.0
float amplitude = 1.0
float sum = 0
for i < octaves
  sum += amplitude * noise(frequency * position)
  frequency *= 2.0
  amplitude *= G

(2)

Listing 2: Fractal brownian motion pseudo code

Figure 8: Without FBM (left) and with FBM (right).

Level of Detail

After we had implemented the FVTA we found that it was
very easy to just let the GPU skip two, three or four blocks at
a time in order to traverse volumes faster. This can be ben-
eficial when rendering distant volumes. Note that we still
upload the full resolution texture to the GPU. Objects that
are further away will automatically be less taxing to render
since there are fewer fragments visible. However, this ap-
proach also makes for a quicker z-axis traversal.

The level of detail is dynamically picked based on the
distance to the voxel volume. The selection is aggressive in
the way that we lower the render resolution very early, one
should probably only lower the resolution when a voxel is
the same size as a pixel in order to keep visual fidelity.

Figure 9: Comparison of distant terrain at full resolution
(left) and with aggressive dynamic LOD (right).



III. Results

Performance

We have found that the render time is lower bounded by
the number of memory reads. Since a trace is executed for
each pixel on the volume bounding-box the render time in-
creases linearly with the screen space area covered by the
volume. The render time is also scene dependent since the
number of memory reads per trace increases drastically
when traversing empty space.

Scene Size Voxels FVTA Fixed

Sphere 1283 2.1M 3 ms 10 ms

Waves 1283 2.1M 4 ms 15 ms

Terrain 1283 2.1M 4 ms 15 ms

Torus 1283 2.1M 6 ms 17 ms

Table 1: Performance comparison, worst case,
(M1 pro 16-core GPU @ 1000x1000).

Scene Size Voxels FVTA Fixed

Empty 1283 2.1M 7 ms 25 ms

Empty 2563 16.8M 19 ms 65 ms

Filled 1283 2.1M 0.2 ms 0.2 ms

Filled 1283 ⋅ 100 209.7M 6.5 ms 6.5 ms

Table 2: Performance comparison, worst case,
(M1 pro 16-core GPU @ 1000x1000).

It should also be noted that there is an overhead only
from uploading the data to the GPU. On M1 this accounts
for 6.5ms when rendering 100 volumes at 1283 as seen in
Table 3 ‘Filled’. When using a second 1283 texture for storing
safe step distance. The overhead increases to approximatly
10ms. This seems to be the case for other GPUs as well.
There is also a problem with glTexImage3D taking 150+ms
per frame on M1, while total CPU time on other computers
we have tried are 0-1ms.

Figure 10: (Terrain*), a long stretch of low-land/valley cov-
ering the diagonal of a 10x10 volume grid resulting in a lot

of empty space.

Performance measurements will refer to Figure 10 as (Ter-
rain*) in order to visualize the worst case scenario for large
terrain.

Scene Size Voxels FVTA Fixed

Terrain 2563 16.8M 8 ms 28 ms

Terrain 1283 ⋅ 100 209.7M 30 ms 85 ms

Terrain* 1283 ⋅ 100 209.7M 46 ms 110 ms

Empty 1283 ⋅ 100 209.7M 53 ms 150 ms

Table 3: Performance comparison, worst case,
(M1 pro 16-core GPU @ 1000x1000).

It is noticable that the number of texture reads have a large
impact on the rendering performance. However, since the
number of pixels does not increase, we can see a rela-
tively small performance decline when going from 16.8M to
209.7M voxels.

Acceleration Structures

1) Level of Detail:
The dynamic level of detail discussed in Section II.H does

provide a decent performance benefit in the worst case
scenario. However, in the average case, it does not appear
to have any significant impact. Note that this is with an ag-
gressive level of detail, rendering distant volumes at a res-
olution low enough to sacrifice visual richness.

Scene Level of Detail Render
time

Terrain* (worst) Full 46 ms

Terrain* (worst) Dynamic LOD 34 ms

Terrain (Figure 9 bottom) Full 20-21 ms

Terrain (Figure 9 bottom) Dynamic LOD 19-20 ms

Table 4: Performance comparison of using dynamic LOD

2) Distance Fields:
A simple approach to accelerate the traversal is to store

one additional datapoint for each voxel, specifiying how
many steps we can safely take from that position. This
can lower the number of texture reads when traversing
through empty space. However, the complexity of keeping
the distance fields up to date when editing the volume
is high. For this reason it can be beneficial to only store
whether the closest neighbours are empty or not. Cur-
rently, the distance fields are calculated by iterating over
each voxels neighbours. They could be generated much
faster using dynamic programming or by letting distance
spread out from surface voxels. The last approach was de-
scribed in [11].



Renderer Neigh-
bours

Empty
𝟐𝟓𝟔𝟑

Terrain*
𝟏𝟐𝟖𝟑 ⋅ 𝟏𝟎𝟎

Fixed Step - 65 ms 110 ms

FVTA - 22 ms 46 ms

FVTA + 1 step DF 8 14 ms 37 ms

FVTA + 2 step DF 124 11 ms 32 ms

FVTA + 3 step DF 342 10 ms 28 ms

Table 5: Performance comparison of storing DF in
separate texture. (M1 pro 16-core GPU @ 1000x1000)

3) Mipmaps:
Distance fields are hard to keep up to date and require

twice the space as regular FVTA. Another approach we
tried were mipmaps. For the entire 3D texture we manu-
ally create a copy with half the resolution on each axis. The
mipmap is conservative in the sense that a texel may only
be air if there is no material inside it. This allows us to jump
ahead many indexes at once without missing any material.
Each time the ray hits material in a mipmap, we will go up
one step in resolution until we hit material in the highest
resolution grid. If the ray did not intersect any material in
that part of a higher resolution mipmap, we will once again
go down to a lower resolution mipmap.

This approach drastically lowers the render complexity
as can be seen in Table  6. Unlike distance field accelera-
tion which in the complexity increases exponentially for
higher orders, each consecutive mipmap is easier to calcu-
late than the last, making for a logarithmic time complex-
ity. The same is true for the memory complexity, where
mipmaps require at most 14% more memory independent
of the number of levels.

Renderer Resolution Empty
𝟐𝟓𝟔𝟑

Terrain*
𝟏𝟐𝟖𝟑 ⋅ 𝟏𝟎𝟎

Fixed Step 1 65 ms 110 ms

FVTA 1 22 ms 46 ms

FVTA + 1
mipmap

1 + 1
8 12 ms 32 ms

FVTA + 2
mipmaps

1 + 1
8 +

1
64 7 ms 26 ms

FVTA + 3
mipmaps

1 + 1
8 +

1
64 +

1
512 5 ms 22 ms

Table 6: Performance comparison, using multiple mipmaps
in separate textures. (M1 pro 16-core GPU @ 1000x1000)

Some further testing showed that removing the highest
resolution mipmap (1/8) did not affect performance noti-
cably. Resulting in a memory usage only 1.7% higher than
without mipmaps. We also tried adding three even lower
resolution mipmaps, essentially simulating a dense octree,
this took us down to 20ms on the Terrain* scene at a very
low additional cost.

Figure 11: Illustration of the traversal complexity with 3
mipmaps, lowest resolution mipmap invisible.

IV. Discussion

Rendering

Rendering using parallax projection and grid traversal
was very tricky to get right. Especially the fast voxel tra-
versal algorithm required a lot of tinkering to get working
properly. Even after looking at some different working im-
plementations, we could not get it to work. However, per-
severance was the key in this case.

Cellular Automata

After not getting cellular automata to work either we
found an article explaining that cellular automata in three
dimesions requires parameters not needed in two dimen-
sions [9]. Bays, C. describes how each cell needs more that
just 2 states, dead and alive. So after implementing a vari-
able number of states, the automata worked fine. Though
rules that did not just collapse were hard to find and get
right.

Unpolished Algorithms

Some algorithms that we implemented were done as a
spontaneous afterthought and are unpolished. The ambi-
ent occlusion could be done much more efficiently and pro-
duce a softer result. The CPU side traversal for editing is
still done in a fixed-step manner on each volume it inter-
sects. Editing therefore has some bugs and would require
some more tinkering.

Performance

The acceleration structures that we built increases the
GPU performance significantly but are not production
ready. The structures are rebuilt every time a volume is
edited, which is very slow for distance fields of high order
but quite fast for mipmaps. However, it is very rewarding
to go from the fixed step rendering pipeline to FVTA and fi-



nally to FVTA with acceleration structures and seeing that
the result is rendered in realtime.

At first we had a problem with FBM heightmap genera-
tion being very slow and therefore built a threaded ter-
raingenerator that could run in the background. However,
when turning debug mode off, generation was understand-
ably way faster.

V. Further Work

1) Octrees: It would be very interesting to implement a
sparse voxel octree instead of the full resolution texture in
order to further increase performance but also drastically
decrease memory usage. However, this was not possible in
the provided timeframe.

2) Deferred rendering: It would be possible to switch
from a forward renderer to a deferred rendering pipeline
in order to draw shadows and do some smoothing of the
normals to make the voxels smoother at the edges.

3) Regular Mesh: Another interesting task would be to
compare the performance of the pipeline with a regular tri-
angulated mesh.

4) Overhead: The 6 ms overhead (with 1283 ⋅ 100 voxels)
from data transfer may be lowered from using sparse oc-
trees, but it would also be a good idea to implement frus-
tum culling. With frustum culling, volumes that are not to
be rendered would not contribute to memory bandwidth.
The limitation on PCI-E x16 of 32GB/s (gen 4) and 64GB/s
(gen 5) may not be enough if we upload the textures every
frame. Consider the following example.

1283 ⋅ 100
1𝑒9

= 0.2 GB

32 GB/s
0.2 GB

= 160 fps
(3)

With one byte per voxel, we put a theoretical limit at 160
frames per second, which is exactly eqvivalent to the 6 ms
overhead we are seeing. We can see how this would go with
even larger worlds or more bytes per voxel. However, we
are not sure that there isn’t any GPU side caching going on.
All we really know is that the overhead increases with total
data bandwidth. In any case, only sending updated chunks
to the GPU would be a good approach as long as they fit in
memory.

VI. Contributions

Feature Originator

FVTA, Shading Zeng,
Lundqvist

CA, SDFs, Noise Jintao Yu

Pipeline, Scenes, Parallax,
Acceleration structures,
Performance measures,
Ambient Occlusion,
Level of Detail,

Lundqvist
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