Fluid Simulation Using Instancing and Compute
Shader

Yuke Fu*

Su Lif

Zhenghang Wu?

Lund University

Sweden

Abstract

1 Introduction

Particle-based fluid simulation is a computational
modeling technique that uses particle methods to
simulate and analyze the motion and behavior of flu-
ids. In this approach, ”particles” carry physical prop-
erties of the fluid such as mass, velocity, and pressure.
As time progresses, the states of the particles need to
be updated according to physical laws and interaction
rules, thereby simulating the motion of the fluid.

In order to make the fluid effect more realistic, we
need plenty of particles, along with significant com-
putation resources. In 2022, openGL introduced the
concept of compute shaders, which means we can dis-
tribute a large amount of computation to the GPU,
thereby reducing the load on the CPU and increasing
overall efficiency.

Our project aims to utilize the compute shader to
perform all the computation of particle’s properties
(velocity, position,force,....) on the GPU in order to
implement fluid particle simulation(2D/3D) .

*fufraker@gmail.com
flisu1017@163.com
fzhenghangwu01@gmail.com

2 Application

2.1 Particle Spawner

A structure named ParticleSpawnData is designed to
store the spawned particles’ data, including their po-
sitions and velocities. The structure is included in a
class named ParticleSpawner, which has a function
GetSpawnData to generate the particles, give them
initial velocities, and return the data.

2.2 Calculation

The calculation of particles’ motion is done within the
compute shader, which was supported by OpenGL in
2022. The particles’ data and other parameters like
value of gravity are passed to the compute shader.
For each particle, it has a predictedPosition value
to predict its movement. In every calculation loop,
the density and near density values at the predicted
position will be calculated firstly. The density is only
affected by the particles within the smoothing radius.
The effects from particles that are farther than the
smoothing radius will be ignored. Let D; and D5 be
the density and near density. Further, let d and r be
the distance between current particle and neighbour
particles and smoothing radius. Then the density and
near density calculation functions are as follows:

p, = S 4F)
D, = M (2)

Given the target density ¢, pressure multiplier mq,
and the near pressure multiplier mo, the pressure P;
and near pressure P, from the density are calculated

| (3)
(4)

With two particles’ pressure and near pressure, we

can calculate the mutual pressure force F' between
them in the following way:

P1 = ml(Dl — t)
P2 = m2D2

—6(r —d)(Py + Pa1)
4

15(T — d)Q(P12 + P22) J»
5]

(5)
Considering the effect of gravity, the acceleration of
particle is:

F

:[r r

+9g (6)

After completing the previous tasks, we have discov-
ered that the particles are too chaotic at the start of
the project. To solve this problem, we tried to add
some friction (viscosity) between the particles so that
the velocity of one particle would influence the neigh-
bour’s velocity, leading to the velocity of the fluid
regions being blurred together. What we did is itera-
tively traverse all the particles within the smoothing
radius to calculate the influence I between the par-
ticles. Then we added the influence of viscosity to
the velocity which meant as time went by, the ve-
locities of all particles would become more like their
neighbours.

4(7.2 _ d2)3

wrd

I= (7)
Now let ¥; be nearby particles’ velocities, dt be the
time interval between calculations, the velocity of
particle can be calculated as:

=17+ 0.0005d - dt +0.06 Y (¥; — &)L -dt (8)

2.3 Instancing

For the rendering part of the project, since we are us-
ing very small circular meshes as individual particles
in the fluid simulation, we need to render thousands
of meshes in order to achieve a less granular fluid
performance, using a loop to traverse the rendering

so many times will greatly reduce the performance,
which can be reflected in the significant reduction
in the frame rate, OpenGL provides instancing ren-
dering techniques like API glDrawArraysInstanced()
and glDrawElementsInstanced(), which allow us to
render multiple instances in a single draw call. What
we need to do is setting the number of instances to
be rendered, passing the position and velocity infor-
mation to the shader, so we can modify the position
and color of each instance to achieve the purpose of
batch rendering. After using batch rendering, the
and performance of the project has been significantly
improved.

3 Result

The final result can be seen in figure below where the
colors of the particles represent the speed of particles,
the redder the faster the particle moves.

1 EDAN3S: project x

Figure 1: 2D fluid simulation.

4 Discussion

4.1 3D version

The result of 2D fluid simulation are convincing with
realistic particle movement. A 3D version would be
better for visual effects, and there should be more
interaction options. Unfortunately, we encountered
much more bugs than we expected when we tried
to transfer the project into a 3D one. After debug-

ging, we discovered that the major issue was the mis-
match of data size between the CPU and GPU. Al-
though we used methods like forced alignment, each
particle still exhibited an anomalous value in the z-
direction after rendering, leading to inaccuracies in
the following force calculations. Despite this prob-
lem, our project required further optimization. Cur-
rently, even though all calculations are performed on
the GPU, the frame rate is still not very high. We are
considering the implementation of advanced methods
like spatial hashing to simplify the calculation so we
will not have to traverse all the particles.

4.2 Data transfer optimization

For the data transfer, every time the position is up-
dated, the calculated particle position and velocity
need to be obtained from the GL.SHADER_STOR-
AGE_BUFFER in the compute shader, and then
when rendering, this data is passed to the GL_AR-
RAY_BUFFER for rendering, due to the fact that
every time rendering has been performed two times
of data transfer from CPU to GPU, resulting in a
much lower final frame per second, if it is possible to
directly transfer the data from the GL_.SHADER -
STORAGE_BUFFER to the GL_ARRAY _BUFFER,
performance will be greatly improved. data transfer
from CPU to GPU twice for each rendering, result-
ing in a much lower final frame rate. If we could
directly transfer the data from GL.SHADER_STOR-
AGE_BUFFER to GL_.ARRAY_BUFFER, the per-
formance would be greatly improved. But unfortu-
nately, we did not find a way to do that in OpenGL.

Reference

Sebastian Lague. Coding Adventure: Simulat-
ing Fluids. https://www.youtube.com/watch?v=
rSKMYc1CQHE&t=515s.

Joey de Vries. LearnOpenGL-Instancing.
https://learnopengl.com/Advanced-
OpenGL/Instancing.

Joey de Vries. LearnOpenGL-Compute Shaders.
https://learnopengl.com/Guest-
Articles/2022/Compute-Shaders/Introduction.

Task Distribution

Yuke Fu: Relization of main function, program logic
design, rendering optimization, team code integration
and debugging.

Su Li: Realization of compute shader (the algorithms
for both 2D and 3D) and help debugging.

Zhenghang Wu: Realization of compute shader
(mainly 2D), boundary box scaling function and de-
bugging.

