NPR Shading using Toon Shading, Cross-Hatching and Edge Detection
Algorithms

Jose Borquez*

Arturo Yepez'

Lund University
Sweden

Abstract

This report navigates the convergence of the intricate dance be-
tween an artist’s strokes and the precision of edge detection algo-
rithms, particularly using the Sobel filter, a mathematical filter that
allow us to obtain more defined borders when analyzing the normal
and depth of a 3D scene. Additionally, the study delves into the
world of toon-shading, a stylized approach inspired by comics and
animation, transcending the boundaries of realism when trying to
approach that style, playing with the use of grey-scales and their
threshold for being draw amongside some clever tricks to get bet-
ter results by using cross-hatching. Throughout, methodologies are
dissected, nuances are uncovered, and the synthesis of traditional
craftsmanship and state-of-the-art technology is celebrated. Join us
in unraveling the tapestry of hand-drawn shading, where creativ-
ity and algorithms intertwine to elevate visual storytelling to new
heights.

1 Introduction

This project is heavily inspired by the work of Youtuber Useless
Game Dev, on "Moebius-style 3D rendering”, where a Unity ver-
sion is implemented, trying to imitate the art style of Moebius paint-
ings.

We delve into the confluence of artistic finesse and technologi-
cal prowess, an intersection where artistry converges with rendering
technology. Our focus lies on the nuanced domain of hand-drawn
shading, where the eloquent strokes of artistic expression seam-
lessly integrate with the precision of edge detection algorithm to
delimitate the space and give more of a drawn vibe, achieving it
using the Sobel filter.

Using the Sobel filter alongisde the line-art shading let us do
an insightful exploration into the intricate interplay of light and
shadow, as we navigate the sophisticated realm of line-art shad-
ing, recognized more formally as toon shading. Together, we shall
meticulously unravel the methodologies, uncover subtle intricacies,
and gain an appreciation for the harmonious amalgamation of tradi-
tional craftsmanship and state-of-the-art technology in the pursuit
of visual excellence.

2 Algorithm and Implementation

Our project uses a two-pass rendering algorithm. The first one ap-
plies the Toon Shading and Cross-Hatching to the scene, and fills
the normal and depth buffers, which are used during the second
pass for the edge detection algorithm to define the outline of every
object in view. The reason to use a two-pass algorithm, is that for
the edge detection, we need an already rendered view of the scene,
so that we can read information from the neighbour pixels.

2.1 First Pass
2.1.1 Toon Shading

For the toon shading, we use the dot product between the light di-
rection and the normal of the geometry, per pixel. This will give us

*e-mail: jo0464bo-s@student.lu.se
fe-mail: ar8732ye-s@student.lu.se

information about which geometries are facing the light. By defin-
ing different thresholds and the corresponding output grey-scale
values, we can create a toon-shading effect. Both the thresholds
and the output grey-scale values are passed as uniform float
values to the shader.

The default values for the thresholds and their corresponding
output grey-scale values are

e > 0.9: Specular light, pure white, 1.0

0.7 — 0.9: Highlight, 0.9

0.5 — 0.7: Base color, 0.7

0.2 — 0.5: Shadow, 0.2

¢ < 0.2: No lightning, pure black, 0.0

This values can be adjusted using the GUTI.
2.1.2 Cross Hatching

During the first pass, the original diffuse texture of every 3D ob-
ject is discarded, and instead, the cross-hatching texture is applied.
Same as the Toon Shading, this is done by comparing the dot prod-
uct between the light direction and the normal, per pixel, using the
same threshold values. As we have defined 5 different grey-scale
values for the toon-shading, we would need 5 different textures for
the cross-hatching, however, 2 of these textures grey-scale values
are pure white and pure black, therefore, no texture is needed. For
the remaining 3 values, we used only one RGB texture, encoding
the 3 cross-hatching textures in each of the RGB channels. This
allows use to load only one texture that wraps around the object in
a more natural way.

The cross-hatching texture scale can be adjusted using the GUI.
2.1.3 Dithering

To give a more natural look, dithering is applied to the lightning
calculations. This is done by using a pseudo-random number gen-
erator using the texture coordinates as seeds. This allow us to blend
between the different toon shadings and cross-hatching textures.

Both the amount of dithering and the texture scale for the dither-
ing can be adjusted using the GUI.

2.2 Second Pass

From the First Pass, the Normal and Depth Buffers, as well as the
rendered view, are passed to the Second Pass as textures, to be used
for the Edge Detection and Final Render.

2.2.1 Edge Detection

For the Edge Detection, we used Sobel Operators (Or Sobel Filters),
which involves estimating the edges present in an image by using
the following Kernels:

(a) Original RGB texture

(c) Only Green channel

(d) Only Blue channel

Figure 1: Cross-hatching RGB texture.

10 -1

Se=12 0 -2
10 -1
12 1

S,=10 0 0
-1 -2 -1

This two kernels are convolved in the neighborhood of each pixel
to identify the regions where the change (gradient) is maximized.
To detect an edge, we use the max value of both results, and com-
pare them to a threshold passed to the shader as uniform float
values. This is done for the Normal Buffer, and for the Depth
Buffer. In our implementation, different threshold values can be
used for the Normal and Depth Buffers.

2.3 Final Render

A final render is done using both the rendered view from the first
pass, and the edge detection results from the second pass. When-
ever an edge is detected, that pixel is painted black on top of the
scene rendered by the first pass. If no edge is detected, the pixel is
left as it is.

3 Results

The toon shading, cross-hatching, and edge detection, as well as the
final result, can be seen in Figure 3.

Sample images for the same scene view, using the same light
direction, but with different parameters for each step, can be seen
in Figure 4

4 Discussion

We are highly satisfied with the visual results of our implementa-
tion. It is highly customizable, at a low performance cost. Sadly,
due to time constrains, many ideas and potential improvements
were discarded in the final version.

(a) Without using Dithering

(b) Using Dithering

Figure 2: Dithering Effect

4.1 Potential improvements

Many improvements can be made to our implementation

¢ The first improvement to be done, it’s the addition of colored
textures for the toon shading part. Right now, our implemen-
tation discard every texture embedded in the 3D object, as
every single geometry it’s drawn using our shader. This im-
provement could add great value to the final aesthethics of our
shader.

* Another improvement, is the idea of using different shading
for different objects in the scene. This includes both different
toon shadings, as well as different cross-hatching textures.

e The final version of our implementation uses 3 rendering
passes instead of 2. One for the toon shading and cross-
hatching, one for the edge detection, and one for the final
view. This was done for debugging reasons, and can be easily
turned into 2 passes again.

References

YOUTUBE: USELESS GAME DEV. Moebius-style 3d
rendering. https://www.youtube.com/watch?v=
J1KNOirh66E/.

(a) Cross-Hatching only (b) Toon shading only

(c) Edge detection only (d) Final scene view

Figure 3: All 3 steps in our algorithm, and the final scene view, no dithering

(©) (d)

Figure 4: Different results using the same light direction, but different parameters for every step.

