One-bit dithering

Olof Ekenberg, Michal Pomorski

Abstract—To achieve an aesthetic effect dithering was applied
to a 3D scene. Ordered and blue noise dithering was investigated
as well as their variants sampled from a cube map. Highlighting
of edges was used to preserve details.

I. INTRODUCTION

Our project was to implement a one-bit dithering shader,
using different techniques to test their validity. We were
inspired by the video games Return of the Obra Dinn and
Who's Lila.

Dithering is a technique which uses patterns of dots in order
to form gradients, with the aim of obtaining an image that
looks like it has a wider range of colors than it actually has.
This can be used both as a way of reducing the file size (as
you need fewer colors to represent the image), to break up
color banding, or as a stylistic choice. If only two colors are
used with the dithering, it is referred to as one-bit dithering.
In this work, we see the technique as a subjective stylistic
choice, rather than a method of objectively improving the
image quality.

It is trivial to apply dithering to a static image, but with a
moving scene and/or moving camera it can result in certain
unintended visual effects. This may be the reason why Who's
Lila uses stationary cameras for most of the game, as moving
objects (such as the player model) can sometimes "flicker"
while moving. The game also uses lines around certain objects,
such as non-player characters, possibly to give them a clear
outline.

Figure 1. A screenshot from Who's Lila, taken from the YouTube channel
ManlyBadassHero[[1].

Return of the Obra Dinn meanwhile spent much time trying
to iron out these unintended effects, as the developer wrote
a blog post discussing the methods they used[2]]. It was the
basis for much of our research on dithering techniques. It also
inspired us to use blue noise dithering as well as highlighting
to make objects clearer.

II. METHOD: ALGORITHMS AND APPLICATION
A. Dithering

The first form of dithering we implemented was ordered
dithering, which uses screen coordinates to sample from a
threshold map. We followed the tutorial by Aeris[3]], and used
the same Bayer matrix.

matl dither_pattern = matu(
0.5, 0.0, -8.375,
0.25, -8.25, ©0.375, -0.125,
8.1875, -0.4375, 0.0625,
8.3125, -0.1875

9.125,

-9.3125,
0.4375, -0.0625,

Figure 2. The Bayer matrix used in our program. The values in the matrix
span from minimum brightness to maximum brightness, with no repetitions,
ordered such that large values are inter-spaced with small values. The idea
is to compare each pixel in the original image with the one in the matrix
and color white those that are brighter. As a consequence, a solid gray block,
the size of the matrix will be scattered with white pixels in proportion to the
brightness of the block.

There seems to be two general approaches to dither sam-
pling; either adding the threshold and source image together
before sampling with cutoff 0.5, or by using the threshold map
as a cutoff. Aeris used the former approach, which seems to
use more operations, but it does also make it easier to adjust
the "intensity" of the threshold map. The general formula for
this approach is:

out = getclosestvalue(in+intensityxmap(screeny, screeny))

We also added the option to use a blue noise texture rather
than a Bayer matrix. Calculating blue noise dynamically is
quite intensive, so we instead used a pre-computed free-to-use
texture from Christoph Peter’s blog Moments in Graphics [4].

B. Application

The effect can be used as a post-processing step for the
whole scene or as a color shader for each individual triangle.
Applying it on each object individually allows the dithering
pattern to remain permanently attached to each surface as
it moves in the scene. This might be desirable because it
reduces flickering and noise during movement. The difficulty
is in achieving pixel-accuracy of the pattern, as much of the
graphics pipeline relies on interpolation depending on depth
and orientation. When the effect is applied on the whole
screen, the result might be seen as a kind of static mesh held
in front the screen - especially noticeable in a moving scene.

An intermediary solution, as applied by [2], is to make the
pattern remain static with respect to camera rotation, relying
on the relative stability of the scene otherwise.

C. Cube mapping

The Return of the Obra Dinn blog post[2] mentions cube
mapping as a way to improve pattern stability, so we also
added options to sample based on a cube map rather than
screen coordinates. Since the Bayer matrix used for ordered
dithering is hardcoded into the shader, we added another
texture from Peter’s blog as a Bayer texture when using cube
map.

GLSL has a built-in cube sampler, which we use. For this
sampler to work, we need a direction vector from the camera
position to the pixel position expressed in world coordinates.
By using the depth of the pixel and its screen coordinates
we calculate the clip-space coordinates, and then multiply the
clip-space coordinates with the inverse-view-matrix to get the
world-space coordinates.

When doing cube-mapped dithering, the resolution of the
texture used plays an important role. Ideally, we want one
pixel of the cube-map texture to correspond to one pixel on the
screen, but since the edges of the cube are further away than
the faces, this can be quite tricky. Having a too high resolution
can also cause problems, as this can lead to flickering.

D. Outlining

Because pixels are thresholded against values taken from
a specific pattern, some details will be lost due to them not
aligning with the dithering pattern. One way to make these
visible is to outline the edges. This is much more feasible in a
3D scene than in a photograph, due to access to the geometry
of the objects in the scene. In particular, information about the
normal vectors of surfaces as well as the distance from the
camera can be used instead of the final pixel color to achieve
a cleaner result.

The method we use for finding edges in a image, the Sobel
filter, is based on highlighting differences between pixels in the
x and y directions separately. Mathematically this is achieved
by applying differentiating convolution kernels to the image.

10 -1 1 2 1
se=[2 0 —2|.,s,=]0 0 0 (1)
10 -1 1 -2 -1

The two kernels used to find edges in the scene are presented
in equation [1, The result of the operation is the L? norm of
the two convolutions.

In order for the highlighting to naturally blend with the
dithering, the lines should not be at full brightness and the
dithering should be applied after the outlining. We found that
fading the intensity of the highlight with the depth of the scene
to be particularly pleasing.

III. RESULTS

A selection of screenshots and the settings used to achieved
them are shown below. Note that the images may be com-
pressed which may result in artefacts not seen in the actual
shader.

Figure 3. Ordered dithering

Figure 4. Blue-Noise dithering

Figure 5. Blue-Noise dithering with Sobel

Figure 6. Cubemapped blue-noise dithering

Figure 7. Cubemapped blue-noise dithering with Sobel

IV. DISCUSSION

As one-bit dithering is a non-photorealistic shader, each of
these shaders have their benefits and drawbacks depending on
what is desired.

Ordered dithering results in a very "geometric" image where
the cross-hatch pattern is very evident. This kind of dithering
was widely used in 8 and 16-bit graphics and thus provides for
a "retro" aesthetic. It may be less desirable if a more smooth
image is wanted, and the pattern becomes very obvious when
the camera is moved or an object on the screen moves.

Blue-noise dithering results in a clearer image overall,
and has a less obvious pattern. This can make the image
seem blurry or noisy, but paradoxically also makes more
details visible compared to ordered dithering. Even though the
dithering pattern is still glued to the screen, the more irregular
pattern makes this harder to notice.

Cube-mapped dithering turned out to be quite tricky. Ideally,
each pixel on the screen should map to one unique pixel,
which is hard to do since the pixels near the corners occupy a
smaller portion of the screen compared to pixels on the cube’s
faces. This meant we had to make a tradeoff between having a
thicker dither pattern, resulting in a blurrier image, and having
the pattern flicker when turning the camera, depending on the
resolution of the cube texture. Overall the effect isn’t that
great, and without edge highlighting it is hard to tell what
is going on.

Our favorite shader combo we developed is probably the one
with blue dithering and Sobel filter. This gives a clear image
without too much visual clutter or noticeable flickering, even
if it could be better. The edge highlighting really helps detail
pop, especially in areas of low dynamic range.

V. CONCLUSION

Our main takeaway from this project is that dithering is a
technique that is easy to implement, but hard to master. The
core principles of dithering is just sampling from a texture or
matrix and thresholding, which are both very simple processes
to implement in shading. However, the naive implementation
of dithering also causes possibly unwanted artefacts, which
are hard to counteract, and the dithering effect can obscure
certain aspects of the image.

We have gone over some of the methods used to counteract
these artefacts, namely blue noise, cube mapping, and sobel
outlining. Out of these, blue noise was the most straightfor-
ward to implement, while cube mapping was far more tricky
to fine-tune.

REFERENCES

Who's Lila? - Horror Game Where You Use Your Face To Talk smile
plz [1], ManlyBadassHero, screenshot taken from 17:39.https://www.
youtube.com/watch?v=HVRKMNP_Luk

Dukope, forum post, retrieved December 13, 2023 from https://forums.
tigsource.com/index.php?topic=40832.msg1363742#msg1363742

Aeris, Dithered Shading Tutorial, retrieved December 13, 2023, from
https://medium.com/the-bkpt/dithered- shading- tutorial-29t57d06ac39
Christoph Peter, Moments in Graphics, retrieved De-
cember 13, 2023, from https://medium.com/the-bkpt/
dithered-shading- tutorial-29157d06ac39

[1

—

[2

—

[3

[t

[4

[l

https://www.youtube.com/watch?v=HVRkMNP_Luk
https://www.youtube.com/watch?v=HVRkMNP_Luk
https://forums.tigsource.com/index.php?topic=40832.msg1363742#msg1363742
https://forums.tigsource.com/index.php?topic=40832.msg1363742#msg1363742
https://medium.com/the-bkpt/dithered-shading-tutorial-29f57d06ac39
https://medium.com/the-bkpt/dithered-shading-tutorial-29f57d06ac39
https://medium.com/the-bkpt/dithered-shading-tutorial-29f57d06ac39

	Introduction
	Method: Algorithms and Application
	Dithering
	Application
	Cube mapping
	Outlining

	Results
	Discussion
	Conclusion
	References

