Bounding Volume Hierarchy Construction

Niklas Sandén*

Lund University
Sweden

Abstract

This report discusses a few different ways of constructing a bound-
ing volume hierarchy (BVH) used for accelerating ray tracing. It
evaluates the performance of a few different split methods and dis-
cusses how to visualise the resulting BVH. One split method, re-
ferred to as the median split method in this report, created signifi-
cantly lower quality results than the others on the high-poly meshes
that were used for the experiments. Using the Surface Area Heuris-
tic created higher quality results but took longer to construct the
BVH.

1 Introduction

Ray tracing has multiple advantages over rasterisation when it
comes to rendering certain effects. Effects such as reflections, re-
fractions, shadows and indirect lighting more naturally map to the
ray tracing paradigm. However, ray tracing is computationally ex-
pensive. One part of the algorithm that takes a significant amount
of time is calculating the intersection points for the rays with a
scene. One important part of modern ray tracers is acceleration
structures that speed up this process, and is a necessity for larger
scenes. This report will focus on one specific type of accelera-
tion structure known as bounding volume hierarchy (BVH). BVH
is based on subdividing the primitives of the scene. An alternative
method is to use a binary space partitioning tree which uses spatial
subdivision instead.

All of the BVHs considered in this report will work like the fol-
lowing: The BVH is a binary tree where the leaves are the prim-
itives of the scene. Each node in the tree has a bounding volume
(BV) that encloses all of the primitives in its subtree. The BV will
always be an axis-aligned bounding box (AABB) in this report. The
BVH has the property that if a ray does not intersect the BV in a
node, then it will not intersect any of the primitives in its subtree
either. This allows the ray tracing algorithm to avoid running cer-
tain intersection tests because it already knows that they will fail. It
is also worth noting that ray-AABB intersection tests are computa-
tionally cheap. Figure[I]shows a simple example of a BVH for two
primitives.

The project this report is about was a real time Vulkan applica-
tion written in Rust. The BVH construction was done on the CPU
while all of the ray tracing was done on the GPU leveraging com-
pute shaders. While the application renders and builds the BVH in
real time, the primitives are assumed to be static. Changing some-
thing about the scene requires rebuilding the entire BVH, which
causes the program to freeze until it is completed. There exists
techniques for efficiently refitting and rebuilding only parts of the
BVH (see [Bikker []), but these are not considered in the report.

2 Algorithms

2.1 Ray Tracing

The ray tracing algorithm used to test the BVH was based on the
one presented in Assignment 1 (2022) of the course EDAN35 at
the Department of Computer Science, Lund University. This is a
Whitted-style ray tracer where the materials support both having a

*e-mail: ni5552sa-s@student.lu.se

Figure 1: The top shows the BVH tree of a 2D scene containing a
triangle and a circle. The bottom shows the scene with the BVs.

reflective and a transparent factor. This means that a ray hitting a
surface with a material might have to spawn two new rays recur-
sively, one in the reflected direction and one in the refracted direc-
tion. Apart from those two, you also spawn one shadow ray per
light source. However, shadow rays do not spawn new rays them-
selves and can therefore be handled separately without recursion.
The only sources of light used in this project were a movable point
light source and an atmosphere. The atmosphere was only used to
give a colour to rays that did not hit anything. Therefore it did not
contribute to surfaces without a reflective or transparent material.

One change in the ray tracing algorithm from the assignment was
that the shadow ray does not just say whether the light is blocked
or not, but rather how much light is blocked. This is done by mul-
tiplying together the transparency values of the surfaces along the
path to the light source. The difference this makes is that shadows
cast from objects with a material with a transparency value > 0 are
lighter. This does not take refraction into account.

2.2 BVH Tree Traversal

To find the primitives that a ray intersects with, we traverse the
BVH tree starting from the root. This was done in depth first search
(DFS) order in this project. When visiting a node, we first check if
the ray intersects the AABB of the node. If it does not, it means
that the ray does not intersect anything in the subtree of this node
and the subtree is skipped. Otherwise, we recursively call the child
nodes if it is an internal node, or test for intersection against the
primitive if it is a leaf node.

2.3 BVH construction

The BVH construction algorithms explored in this project all cre-
ate the resulting tree top-down recursively. The main operation is:
Given a set of primitives and their BVs, create a node with a BV
containing all of the BVs and split the set in two. This is applied
recursively on the new sets (which become child nodes) until we
only have one primitive left, which becomes a leaf node. The way

the algorithms presented differ from each other is in the way the set
of primitives is split. However, they all do split along a specified
axis.

Choosing an axis to split on can be done in a few different ways.
The way presented in [Shirley 2020| chooses the axis to split on
randomly. Another way presented in [Pharr et al. 2016] is to look
at the distance between the minimum and maximum coordinate of
the centroids of the BVs along each axis, and pick the axis with the
largest distance. Both methods were implemented in the project,
but the results shown in this report are only from using the latter
method. A final way (that was not implemented in the project) is
to try each axis and pick the one which produced the best results
[Pharr et al. 2016]. This is most relevant when using the surface
area heuristic presented in Section 2.3.2]since that gives us a way
to define which result was better.

2.3.1 Median/mean split method

Once the split axis has been decided we just need to decide a point
to split on. Two simple methods are to split on the median or
the mean. These are called "EqualCounts” and ”"Middle” in [Pharr
et al. 2016] respectively. In both cases, the median or mean refers
to their position along the specified axis. Splitting on the median
could be done by sorting all of the primitives along the axis and
then splitting at the middle element. This is how it is done in
[Shirley 2020]. However, it is sufficient to just reorder the ele-
ments such that all elements in the first half of the array have a
smaller coordinate than those in the other half. This can be done
in O(n) time instead of O(nlogn) and is how it is handled in
[Pharr et al. 2016]. Rust’s standard library has a function on slices
called select_nth_unstable which implements this. As for
the mean split method, the mean of the centroids along the axis
is calculated. Then the array is partitioned based on whether the
coordinate is less than the mean or not.

2.3.2 Surface Area Heuristic

The previous two split methods only need O(primitives) time to
find a split point, which is relatively fast for a top-down approach.
Although efficient, these simple algorithms for deciding split points
can sometimes make poor decisions, leading to low quality trees
that take longer on average to traverse than is necessary. One ex-
ample for the median split method is demonstrated in Figure[3] A
more complex and time consuming algorithm that produces bet-
ter quality trees using a surface area heuristic is presented here.
Whether or not a higher quality tree is worth the extra construction
time depends on how many rays are traced against it compared to
how often it is partially or entirely rebuilt.

The SAH is a cost function that we want to minimise. It is done
greedily for each internal node in a top-down approach. Calculating
the SAH requires that the set of primitives is already split. Let N,
and N be the number of primitives in the left and right child nodes
respectively. Further, let Ap, Ar, and Ar be the surface area of the
AABB of the node and its children. Then the cost function is as
follows:

Np AL + NrAgr
Ap

The motivation behind the usage of surface areas relates to the prob-
ability that a ray from a random direction that intersects the AABB
of the parent node also intersects the inner AABB. This is described
in [Pharr et al. 2016]. To find the split point yielding the minimum
SAH, one can test all of the different split points and calculate the
SAH for each one. This could be done by first sorting the primitives
and then testing splitting after each primitive in order. In order to
avoid the sorting and reduce the number of split points to check,
one could use binnned SAH. This involves splitting the axis into B
equally sized buckets (starting from the centroid with the lowest to
the highest coordinate). We can find the bucket each primitive is
in in linear time. Then we can try to split after each bucket. The

¢(P,L,R) = (1)

implementation used in this project is based on the one in [Pharr
et al. 2016] which is O(primitives + B?), but the authors state
that it could be reduced to O(primitives + B) by calculating the
surface areas and BVs iteratively scanning from the left and right.
The more buckets used the higher quality the resulting tree will be,
but the longer it takes to construct.

3 Implementation Details
3.1 Recursion in Compute Shaders

All of the ray tracing is done in compute shaders written in GLSL
which does not support recursive function calls. This poses some
challenges when implementing some of the aforementioned algo-
rithms since they are most easily described recursively. The ray
tracing algorithm used allows each ray to recursively spawn two
new ones. When traversing the BVH-tree, each internal node has
two child nodes that we need to recursively check. Both of these
recursions can be handled by having a stack that stores the infor-
mation about work that needs to be done. In the case of ray tracing,
it stores the ray, the light contribution factor, and the depth. As for
the BVH-traversal, the stack only needs to store a pointer to an un-
evaluated node. Since each node can have at most two children in
both algorithms, the amount of elements that needs to be stored in
the stack at the same time is bounded by O(depth). The ray trac-
ing is already capped at a certain depth value, but the largest depth
of the BVH is not. The characteristics of the resulting trees, in-
cluding how close they are to being balanced, are briefly discussed
in Section [but this quality greatly depends on the split method
used during BVH construction. One could imagine building a BVH
where the height is O(primitives). The current GLSL implemen-
tation uses a stack-allocated array for the stack, which would not be
possible if the size of it could grow into the millions. However, all
of the split methods empirically construct trees with a much smaller
height even for millions of primitives, so this is not an issue in prac-
tice.

It is worth mentioning that as for the BVH, it is possible to tra-
verse it without using the stack based approach. One way is to do
the DFS traversal ahead of time when constructing the BVH and
for each node save the node it traverses to right after its subtree
has been evaluated. Then the GLSL implementation only needs a
pointer to the current node, and it is still able to perform the full
DEFS traversal (while skipping subtrees early if the ray does not in-
tersect the BV).

3.2 Pipelines

The project uses three different pipelines in order to render one
frame. These can be seen in Figure 2] Both the BVH Rendering
and the Ray Tracing pipelines write their results to the same Output
Image. Then there is a third pipeline that just renders the Output Im-
age as a texture onto a fullscreen quad, the result of which is stored
in a Swapchain Image ready to be presented to the screen. The rea-
son why the rendering algorithms do not output their results directly
to a swapchain image is because it is not guaranteed that swapchain
images can be written to directly from a compute shader, which
is done in the Ray Tracing pipeline. The idea of using a graphics
pipeline to just render the results of the ray tracer to a quad came
from the computeraytracing example by Sascha Willems [Willems

].
3.3 BVH Rendering

Rendering the BVH is not done through ray tracing but rather
through rasterisation for efficiency. The visualisation of the BVH is
not supposed to be shaded, but it should be in 3D space and should
be able to block and be blocked by the ray-traced primitives.

The first step is to use instanced rendering to render all of the
BVs at once. Since they are all axis aligned, the only per instance
data needed is a scale and an offset. Each instance is rendered using

Output Image

BVH Rendering

1

Graphics Pipelines

Ray Tracing | ---- Compute Pipeline

A4

--------------- Render to Quad/Screen [«<— Swapchain Image

Figure 2: The three different pipelines used to render a frame.

the line primitive with each edge of a cube. In the fragment shader,
the line colour is stored in the RGB-components in the output im-
age. In the alpha component, we instead store the distance from the
camera to the fragment. This distance is essential for the ray tracing
step. This pipeline also uses a depth buffer, meaning the value in
the alpha channel will be at the front.

When running the ray tracing algorithm in the compute shader,
we first check if the corresponding pixel was written to by the BVH
Rendering. If it were, we discard any intersection points for the first
ray where the distance to the point is greater than the alpha value.
If no intersection point was found, then we use the colour stored in
the output image. When using this approach the lines will not be
visible in reflections or refractions.

3.3.1 Rendering a subset of BVs

The program allows dynamically specifying a filter of depth val-
ues that should be rendered. Any BV with a depth value (in the
BVH tree) not in the range will not be rendered. The part of the
VkBuffer containing the per instance data was sorted accord-
ing to these depth values when it was filled. With this memory
layout, it suffices to change the offset and size values sent to the
vkCmdDrawIndexed function to render any specific range of
depth values.

4 Results

4.1 BVH Showcase

Figure 3] shows the BVs after splitting the set of five spheres once.
SAH and the mean split method chose to split at the same point
while the median method chose a different one. Splitting on the
median ensures that the counts of primitives in the two resulting
sets differ by at most one, which results in picking a seemingly bad
split point. Other times, SAH and the median split method are the
ones who split at the same point. Figure 4] shows all of the BVs
except for the one containing all five spheres.

(a) Median

(b) SAH & Mean

Figure 3: Shows the BVs after splitting the spheres once using the
different split methods. SAH and Mean produced the same results.

(a) Median & SAH (b) Mean

Figure 4: Shows the BVs at all depth values (except for the root)
using the different split methods. Median and SAH produced the
same results.

Figure [5| shows the BVs at depth eight and nine on a high-poly
model. Interestingly, this frame is rendered faster than it would
if the BVH was not rendered at all (around 12 ms instead of 17
ms). This is because every pixel that is covered by a BV outline
in the final image would only have sent a single ray into the scene
(more if super sampling is enabled), as described in Section [3:3]
Rendering the BVH is very efficient with instanced rendering, so
the time saved in the compute shader ends up being more than the
time spent rendering the BVH. The line width was doubled when
taking the screenshots for this report to make them easier to see,
which further increases the amount of time saved.

Figure 5: Only the BVs with depth eight and nine in the tree are
rendered. This model contains over 700 000 triangles.

4.2 Performance

The performance varies greatly depending on the scene geometry
and the camera’s position and direction. Nevertheless, Table |I| is
provided with some performance metrics when the different split
methods were used to render the image seen in Figure[6} SAH out-
performed the others but took longer to construct the BVH. Increas-
ing the bin size from 12 (which was the default value in
[2016])) did not make a comparatively large difference in frame time,
but did drastically increase the build time. The most notable perfor-
mance difference is how much better the mean split method per-
formed compared to the median one. Although it performs worse,
the focus on splitting the set into two of equal count by the median
split method results in a more balanced binary tree with a smaller
height. The mean split method produces the most unbalanced trees,
but this ends up not being an issue because the tree height is still
small.

Although the performance varies with different models and cam-
era setups, the relative ranking of the split methods remains the
same as in this specific experiment. Another scene that was tested

was one made up of spheres placed uniformly at random in a cube
volume. When the primitives are placed like this, all split methods
produce much more similar trees, with similar frame time and tree
height compared to the results in Table m

Table 1: Performance data when using the different split methods to
render Figure[6] It shows the average frame time, the construction
time and the resulting BVH tree height.

Split method | Frame time (ms) Build (ms) Tree height
Median 41.8 105 20
Mean 30.1 124 34
SAH 12 bins 26.5 255 30
SAH 32 bins 26.1 604 30

Figure 6: The Sponza scene rendered at 800x600 pixels. This
model contains over 250 000 triangles.

5 Discussion

5.1 Optimisation attempts

There is actually another part to the SAH-based algorithm described
in [Pharr et al. 2016] that is not implemented in the latest version
of the project. If leaf nodes can contain multiple primitives, then
one can calculate the cost of creating a leaf node right away with all
of the primitives and compare it to the best cost found when split-
ting. When doing this, the cost function for splitting (T) contains
an additional term (see [Pharr et al. 2016|]). This was later removed
from the project in favour of code simplicity since it did not have
any noticeable impact on performance.

The program supports having both spheres and triangles as prim-
itives in the same scene. These require different types of data during
ray tracing. The current implementation has one storage buffer with
all of the data for the spheres, and a separate one for the triangles.
A BVH leaf node contains the index into one of these buffers along
with a flag specifying whether it is a sphere or a triangle primitive.
A different approach that was once tested was to store spheres and
triangles in the same buffer (padding the smaller of them). This re-
quired reinterpreting the bits of some of the fields into a different
type in the shader. This approach had very little positive impact on
performance (if any) and made the compute shader more complex
and was therefore not kept.

The last thing that was tested in the project was to add double
buffering to see if it could increase the performance. Almost all of
the frame time is taken up by the compute shader (ray tracer) alone.
This means that the only real downtime is while the CPU is re-
recording to the command buffer after it is no longer in use by the
GPU. I was also thinking that maybe enqueueing the next frame’s
work would allow the scheduler to more efficiently distribute the

workload. However, the performance difference was not noticeable
and therefore removed in favour of simplicity.

5.2 Conclusions

The results turned out well, particularly the visualisation of the
BVH trees. The most surprising revelation was that the mean split
method consistently outperformed the median split method by a
good margin on all of the high-poly models that I tested them on
(which are more than those presented in the report). The mean split
method also came respectably close to the performance of SAH.
Having a BVH drastically increases the scene complexity that is
feasible to ray trace, even when using the median split method
which performed the worst. Before adding the BVH, the appli-
cation had no chance of ray tracing those complex scenes with hun-
dreds of thousands of primitives. Even after just 1000 primitives,
the frame time was already worse than the frame time of rendering
the Sponza scene using the median split method.

A potential next step for the project would be to look into refit-
ting and partially rebuilding the BVH to allow rendering dynamic
scenes in an efficient way. There is also Linear BVH (LBVH) which
constructs the tree bottom-up instead and is easier to parallelize
than the methods presented in this report. The goal of the project
was originally to explore dynamic BVH construction, but ended up
instead focusing on the SAH and visualising the BVH tree.

References

BIKKER, J. How to build a bvh https:
//jacco.ompf2.com/2022/04/13/
how-to-build-a-bvh-part-1-basics! Accessed:

2022-12-18.

PHARR, M., JAKOB, W., AND HUMPHREYS, G. 2016. Physically
Based Rendering: From Theory to Implementation, 3rd ed. Mor-
gan Kaufmann Publishers Inc., San Francisco, CA, USA, Nov.

SHIRLEY, P., 2020. Ray tracing: The next week.
https://raytracing.github.io/books/
RayTracingTheNextWeek .html, December.

WILLEMS, S. Vulkan c++ examples and demos.
//github.com/SaschaWillems/Vulkanl
2022-12-05.

https:
Accessed:

https://jacco.ompf2.com/2022/04/13/how-to-build-a-bvh-part-1-basics
https://jacco.ompf2.com/2022/04/13/how-to-build-a-bvh-part-1-basics
https://jacco.ompf2.com/2022/04/13/how-to-build-a-bvh-part-1-basics
https://raytracing.github.io/books/RayTracingTheNextWeek.html
https://raytracing.github.io/books/RayTracingTheNextWeek.html
https://github.com/SaschaWillems/Vulkan
https://github.com/SaschaWillems/Vulkan

	Introduction
	Algorithms
	Ray Tracing
	BVH Tree Traversal
	BVH construction
	Median/mean split method
	Surface Area Heuristic

	Implementation Details
	Recursion in Compute Shaders
	Pipelines
	BVH Rendering
	Rendering a subset of BVs

	Results
	BVH Showcase
	Performance

	Discussion
	Optimisation attempts
	Conclusions

