
Visualizing Black Holes With a Physically Accurate
Relativistic Ray Marcher

Pontus Rosqvist

Lund University*

Abstract
The theory for manifolds and geodesics on manifolds is informally
presented and the geodesic equation is derived. Geodesics are in-
terpreted to be, and indeed are, the paths light travels along in the
space-time manifold. Adaptive Runge-Kutta methods are applied
to solving the geodesic equation and images of a black hole are
rendered where rays are sent from a camera and follow geodesic
paths under the influence of a non-rotating black hole.

Introduction
This project aims to create a relativistic ray marcher which renders
a scene where the light is bent by the metric induced by a non-
rotating black hole. To this end we need to construct rays that bend
correctly as we step along them, this can be done if we solve the
geodesic equation:

γ̈k(t) +

n∑
i,j=1

Γk
ij(γ(t))γ̇

i(t)γ̇j(t) = 0 1 ≤ k ≤ n (1)

where γ : R → Rn is a path in space and Γk
ij : Rn → R are the

Christoffel symbols which are a set of functions which in a sense
describe how the ambient space influences “straight” paths. The
Christoffel symbols are intrinsic functions associated with the am-
bient space we are considering and for the usual Euclidean, i.e. flat,
space we have that the Christoffel symbols are all zero.

The geodesic equation generalises the notion of “straight” paths
for curved spaces in the sense that a geodesic is the path that a
particle (or a photon) would follow if it is set in motion from a point
in some direction without any forces acting on it as it moves. Since
the Christoffel symbols are identically zero for Euclidean space,
Rn, the geodesic equation becomes

γ̈k(t) = 0

and the solution to this differential equation is

γ(t) = at+ b

for some constant vectors a, b ∈ Rn. This is a straight line which
we except a particle to follow if it is set in motion and no external
forces affect it.

To understand the geodesic equation it is necessary to talk about
Riemannian manifolds and the Levi-Civita connection. We will in-
troduce this later but for now we note that the Levi-Civita connec-
tion is an operator that acts on vector fields similarly to a derviative,
with the Levi-Civita connection the geodesic equation simplifies to
the following

∇γ̇(t)γ̇(t) = 0

Another interesting differential equation that we will encounter
later is the Jacobi equation which is the following differential equa-
tion

∇γ̇(t)∇γ̇(t)J(γ(t)) +R(J(γ(t)), γ̇(t))γ̇(t) = 0

a vector field, J , that satisfies the above equation is called a Jacobi
field which measures the divergence of geodesics.

*email:pontus.rosqvist@gmail.com

Method & Theory
For an excellent introduction into the beautiful theory of Rieman-
nian manifolds we refer the reader to the textbook by Gudmundsson
titled An Introduction to Riemannian Geometry [1].

Manifolds
Consider the line that was defined previously

γ(t) = at+ b

where a, b ∈ Rn, clearly it does not matter which dimension, i.e.
the value of n, we choose to use here. The line is always, in a
sense, one-dimensional and if we bend and twist the path we do not
change this property. If we go up one dimension we can define a
surface in the following way

Γ(s, t) =



s
t

at2 + bs2 + c
0
...
0

 ∈ Rn

where a, b, c ∈ R. Even if we bend the surface it is still intrinsically
two-dimensional, Similarly we might define higher-dimensional
analogues of curves and surfaces but regardless of the dimension
of the ambient space they are defined in (Rn in the two previous
examples) they have their own intrinsic dimension and structure.
Manifolds are a mathematical structure which generalises this no-
tion of curves and surfaces and formalises what it means for a man-
ifold to be continuous and even non-flat and this definition does not
require defining the manifold in an ambient space. This is an im-
portant distinction when it comes to mathematical rigour but will
not affect us.

For future reference note that the set of all smooth functions de-
fined on a manifold, M , is denoted by C∞(M).

Vector Fields and The Tangent Space
Consider the two dimensional manifold defined above embedded in
the three-dimensional space R3:

Γ(s, t) =

 s
t

at2 + bs2 + c

 ,

it is important to note that the manifold is the image of the function
and the function has no relation to the manifold otherwise. At every
point of a manifold we can define a tangent space which, informally
corresponds to the set of all possible tangents for any path through
that point. For our example above a basis for the tangent space can
be defined in the following way:

∂Γ

∂s
=

 1
0
2bs

 ∂Γ

∂t
=

 0
1
2at





by convention (and other more nebulous reasons) the Γ is usually
dropped and the tangent space is seen as directional derivatives. If
we denote a manifold by M then it’s tangent space at a point p ∈ M
is denoted by TpM .

Once we have defined a tangent space at every point we would
like to define vector fields. Vector fields associate each point from
the manifold to a tangent in the tangent space, i.e. if X is a vector
field then for p ∈ M we get X(p) ∈ TpM . Since a vector field
is not a function in the usual sense (points are mapped to different
domains) we usually write Xp for the tangent vector at p instead.

Since manifolds are continuous it is possible to define what it
means for a vector field to be continuous, this is quite technical but
is intuitively easy to understand, consider the vector field defined
on the unit circle in figure 1 below.

Figure 1: Some points of a continuous vector field defined on the
unit circle.

The vector field in figure 1 has the following formula

Xp =

[
−y
x

]
, where p =

[
x
y

]
Clearly the unit circle is a one-dimensional manifold and at each
point we have defined a vector tangent to the unit circle and between
each point the vectors are continuously defined. Since tangent vec-
tors are directional derivatives (along that vector at that point) a
vector field can be thought of as acting on functions on the whole
manifold. The set of smooth vector fields on a manifold is denoted
by C∞(TM).

Riemannian Manifolds
A Riemannian manifold is a manifold with a metric defined on it. A
metric is, in essence, a continuous (and separate) inner product for
the tangent space at each point of a manifold, this is exactly what
makes manifolds curved. Note that any inner product defined on a
vector space V, (·, ·) : V × V → V maps vectors to numbers with
the following properties

(X,X) ≥ 0,

(X,X) = 0 ⇐⇒ X = 0,

(X,Y ) = (Y,X),

(X + Y,Z) = (X,Z) + (Y,Z).

Given any basis of the vector space one can find a matrix, associated
with the inner product such that

(X,Y ) =
[
X1 . . . Xn

] a11 . . . a1n

...
. . .

...
an1 . . . ann


Y1

...
Yn



a Riemannian metric on a manifold is then just an inner product on
each tangent space of that manifold in a smooth sense, if we have
smooth vector fields which form a basis of the tangent space of the
manifold at each point then we can find the values of the matrix of
the Riemannian metric at each point

gp(·, ·) =

g11(p) . . . g1n(p)
...

. . .
...

gn1(p) . . . gnn(p)


this basis is always possible to construct locally but not all mani-
folds admit set of vector fields which form a basis globally.

The Levi-Civita Connection
The Levi-Civita connection, ∇ : C∞(TM) × C∞(TM) →
C∞(TM), is a fundamental operator that has similar properties to
the usual directional derivative for manifolds which acts on vector
fields to give a new vector field. The Levi-Civita Connection has
the following properties, let X,Y, Z ∈ C∞(TM), λ, µ ∈ R and
f, g ∈ C∞(M) then

∇X(λY + µZ) = λ∇XY + µ∇XZ

∇X(f · Y ) = X(f) · Y + f · ∇XY

∇(f ·X+g·Y )Z = f · ∇XZ + g · ∇Y Z

any operator which satisfies these relations is called a connection
and many of these exist, the (unique) Levi-Civita connection also
satisfies the following relation

X(g(Y,Z)) = g(∇XY,Z) + g(Y,∇XZ)

If we let
{

∂
∂xi

}n

i=1
be a set of vector fields on a manifold which

form an orthonormal basis of the tangent space at each point on the
manifold then the Christoffel symbols Γk

ij : M → R associated
with the Levi-Civita connection are defined in the following way

∇ ∂
∂xi

∂

∂xj
=

n∑
k=1

Γk
ij

∂

∂xk
.

The Christoffel symbols can be defined in terms of the Riemannian
metric on the manifold, we will not derive it here but the formula is
the following:

Γk
ij =

1

2

n∑
l=1

gkl
(
∂gjl
∂xi

+
∂gli
∂xj

− ∂gij
∂xl

)
Where gkl is element kl of the inverse of the metric. The Levi-
Civita connection is also called the covariant derivative and the
interpretation is that it computes the orthogonal projection of the
directional derivative of vector fields along the tangent space.

The Geodesic Equation
Geodesics are paths defined on a manifold, γ : R → M , and are
solutions to the following differential equation

∇γ̇(t)γ̇(t) = 0.

This form of the formula is, however, entirely useless when it comes
to actually finding geodesics numerically on a manifold by solving
the differential equation. We can however rewrite this into a more
useful form, note that if we have a set of vector fields which forms
an orthonormal basis at every point of the tangent space then the
tangent of the path can be written in the following way

γ̇(t) =
n∑

j=1

γ̇j(t)

(
∂

∂xj

)
γ(t)



then we can apply the previously defined properties of the Levi-
Civita connection in the following way

∇γ̇(t)γ̇(t) =

n∑
j=1

∇γ̇(t)

(
γ̇j(t)

(
∂

∂xj

)
γ(t)

)

=

n∑
j=1

(
γ̇(t)(γ̇j(t)) + γ̇j(t)

(
∇γ̇(t)

∂

∂xj

)
γ(t)

)

=

n∑
j=1

(
γ̈j(t)

(
∂

∂xj

)
γ(t)

+

γ̇j(t)

(
∇∑n

i=1 γ̇i(t)
∂

∂xi

∂

∂xj

)
γ(t)

)

=

n∑
j=1

(
γ̈j(t)

(
∂

∂xj

)
γ(t)

+

n∑
i=1

γ̇i(t)γ̇j(t)

(
∇ ∂

∂xi

∂

∂xj

)
γ(t)

)

=

n∑
j=1

(
γ̈j(t)

(
∂

∂xj

)
γ(t)

+

n∑
i=1

γ̇i(t)γ̇j(t)

n∑
k=1

Γk
ij(γ(t))

(
∂

∂xk

)
γ(t)

)

=

n∑
k=1

(
γ̈k(t) +

n∑
i=1

n∑
j=1

γ̇i(t)γ̇j(t)Γ
k
ij(γ(t))

)(
∂

∂xk

)
γ(t)

for this vector field to be zero each coordinate of the resulting vector
field has to be zero for all t which means that we get a set of n non
linear differential equations of the following form

γ̈k(t) +

n∑
i=1

n∑
j=1

γ̇i(t)γ̇j(t)Γ
k
ij(γ(t)) = 0

which is the geodesic equation.

The Jacobi Equation
The Jacobi equation is the following differential equation

∇γ̇(t)∇γ̇(t)J(γ(t)) +R(J(γ(t)), γ̇(t))γ̇(t) = 0.

The interpretation of this differential equation is that the vector field
J , which is defined along a geodesic, measures how much infinites-
imally close geodesics will diverge from the current one. An exam-
ple of a Jacobi field along a geodesic can be seen in figure 2 on the
unit sphere in R3.

γ(t)

J(t)

Figure 2: The great circle along the equator of the sphere is a
geodesic and the attached vector field is a Jacobi field.

If we, for a second, remember that we would like to image a
black hole we could leverage this interpretation by solving this
equation along pilot geodesics and recording the maximal separa-
tion at each geodesic. We would then be able to quantify how much
geodesics spread apart when sent from a pixel which could give
us an adaptive supersampling where we make sure to send many
rays for a pixel with a high maximal separation and few rays for a
pixel with a low maximal separation to ensure that we hit the scene
evenly with rays.

This form of the differential equation is, again, useless for actu-
ally solving the Jacobi equation numerically and it even depends on
the Riemannian curvature of the manifold which is calculated from
the Christoffel symbols and their derivatives which adds another
layer of complexity.

The derivation of the formula for the Jacobi equation which is
more friendly for numerical computations can be found on page 9
in the appendix. The formula is the following:

0 = J̈k + 2J̇TΓkJ + JT

(∑
m

γ̇m ∂

∂xm
Γk

)
J

+ J̇TΓkγ̇ +
(
Γkγ̇

)∑
m

(
JTΓmJ

)
+
∑
l

γ̇l
(
JTRk

l γ̇
)

To make the formula easier to write down we have defined the fol-
lowing symbols

Γk =

Γ
k
11 . . . Γk

1n

...
. . .

...
Γk
n1 . . . Γk

nn



Rk
l =

R
k
l11 . . . Rk

l1n

...
. . .

...
Rk

ln1 . . . Rk
lnn



e =

1...
1


and this actually enables us to rewrite the geodesic equation into a
quite elegant form

γ̈k + γ̇TΓkγ̇ = 0.

Adaptive Runge-Kutta Methods
It is now clear that to be able to find the path that photons will
follow and how many photons we need to send at each pixel we
need to be able to solve non-linear second order ordinary differ-
ential equations. Runge-Kutta methods are numerical methods for
approximating solutions to non-linear first order initial value differ-
ential equations. These differential equations are of the form

ẏ(t) = f(t, y(t))

y(0) = x

to solve this numerically we need to restrict ourselves to approx-
imating the solution on an interval, let this interval be [0, T ] and
place N equally spaced points in this interval, we introduce the fol-
lowing symbols

ti =
T

N − 1
· i = ∆t · i

yi = y(ti)



the simplest Runge-Kutta method is the most natural explicit Euler
which approximates the solution in the following way

yi+1 = yi +∆tf(ti, yi)

y0 = x

For each step we take we will have to detect if the ray has collided
with any object in the scene, thus we will need to take large steps
to have any hope of rendering an image in a reasonable amount of
time. As far as numerical integration methods go the explicit Euler
is first order convergent which means that as the step size goes down
the error decreases linearly.

A large step size will lead to large cumulative numerical errors
especially close to the black hole where a small deviation will lead
to a large difference in where the ray finally ends up. Thus the
explicit Euler method will not be sufficient for solving our differ-
ential equation. A suitable method for solving is thus a Runge-
Kutta method with a higher order of convergence. A general ex-
plicit Runge-Kutta method can be described by its Butcher tableau
which is of the form [2]

0
c2 a21
c3 a31 a32
...

...
...

. . .
cs as1 as2 . . . ass−1

b1 b2 . . . bs−1 bs

the update rule for a Runge-Kutta method with this Butcher tableau
is the following

k1 = f(ti, yi )

k2 = f(ti + c2∆t, yi + (a21k1 )∆t)

k3 = f(ti + c3∆t, yi + (a31k1 + a32k2 )∆t)

...
ks = f(ti + cs∆t, yi + (as1k1 + . . .+ ass−1ks−1)∆t)

yi+1 = yi +∆t(b1k1 + . . .+ bsks)

By computing an update rule like this with well chosen parameters
one can get a higher order of convergence and be able to take larger
step sizes while still accurately solving the differential equation.

One problem with this, however, is that we do not want to use a
fixed step size, when we know that the error will be high we want to
use a small step size and when we know that the error will be low
we can use a larger step size. This is the basis of adaptive meth-
ods which update the step size such that the error is always kept
at some approximate low value. Since the true error is not known
in general one usually approximates the error with an embedded
method which has a lower order of convergence. These methods
are described by an extended Butcher tableau

0
c2 a21
c3 a31 a32
...

...
...

. . .
cs as1 as2 . . . ass−1

b1 b2 . . . bs−1 bs

b∗
1 b∗

2 . . . b∗
s−1 b∗

s

and the new step, yi+1, as well as the error estimate, ei+1, are com-

puted in the following way

k1 = f(ti, yi )

k2 = f(ti + c2∆t, yi + (a21k1 )∆t)

k3 = f(ti + c3∆t, yi + (a31k1 + a32k2 )∆t)

...
ks = f(ti + cs∆t, yi + (as1k1 + . . .+ ass−1ks−1)∆t)

yi+1 = yi +∆t(b1k1 + . . .+ bsks)

ei+1 = yi+1 − y∗
i+1 = ∆t

i−1∑
j=1

(bj − b∗j )kj

Given some minimal and maximal error tolerances , τ1 and τ2, and
a desired error tolerance, τ , we can verify that the error lies inside
the tolerance

τ1 ≤ ∥ei+1∥2 ≤ τ2

The error estimate can then be used to update the step size with the
following formula

∆ti+1 =

{
∆ti, if τ1 ≤ ∥ei+1∥2 ≤ τ2

0.9∆t
√

τ
2∥ei+1∥2

, otherwise

one can then either accept the step and move on with the new step
size or reject the step and try again with the new step size.

The attentive reader will notice that these methods cannot be im-
mediately applied to our problem since these methods can solve
differential equations of the form

ẏ(t) = f(t, y(t))

y(0) = x

and both of the differential equations we would like to solve can be
written on the form

ÿ(t) = f(t, y(t), ẏ(t)){
y(0) = x

ẏ(0) = v

this is, however, not a problem since any second order differential
equation with n equations can be rewritten as a first order differen-
tial equation with 2n equations in the following way

ż(t) = f(t, z(t))

z(0) = z0

where

z(t) =

[
y(t)
ẏ(t)

]
g(t, z(t)) =

[
ẏ(t)

f(t, y(t), ẏ(t))

]
z0 =

[
x
v

]
which enables us to use Runge-Kutta methods to approximate so-
lutions to the geodesic equation.



Implementation
Deriving The Christoffel Symbols
To begin with we must define the manifold and choose a set of
coordinates. Our Riemannian manifold is R4 with a special metric,
the coordinates of a point p will be written in the following way

p =
[
pt px py pz

]T

Where the first coordinate is the time at that point and the next three
coordinates are the spatial coordinates.

We are working with a specific manifold which is the space-time
manifold we live in, the metric on this manifold satisfies the Ein-
stein field equations which is a differential equation. People smarter
than us have already produced closed form solutions of this metric
induced by a black hole positioned in the origin. The metric is the
following:

g =


− (1− rs

4R )2

(1+ rs
4R )2 (

1 + rs
4R

)4 (
1 + rs

4R

)4 (
1 + rs

4R

)4


previously we promised that the metric would be a matrix of func-
tions defined on the manifold which defines an inner product on the
tangent space at each point of the manifold. This proposed met-
ric is however not positive definite which would be a requirement.
To this we say that this is why general relativity studies pseudo-
Riemannian manifolds and don’t worry about it.

In the metric we define R =
√

x2 + y2 + z2 and note that the
metric does not depend on the time, t, this makes sense since we
except light to bend the same way regardless of when it occured. We
also see that the only spatial dependency of the metric is how close
a point is to the origin, where the black hole is, which makes sense
since we expect the bending of light to be rotationally symmetric
around a black hole. Additionally note that there is a parameter
here which is the event horizon rs

4
which is a radius we have to

choose inside of which light cannot escape.
To compute the Christoffel symbols with the least work needed

we first note that the metric can be written in the following way

g =

f1 f2
f2

f2


f1(x, y, z) = −

(
1− rs

4R

)2(
1 + rs

4R

)2
f2(x, y, z) =

(
1 +

rs
4R

)4
To compute the Christoffel symbols we need to compute all partial
derivative of these functions which are the following

∂f1
∂t

= 0,
∂f2
∂t

= 0

∂f1
∂x

= −xrs
R3

1− rs
4R(

1 + rs
4R

)3 , ∂f2
∂x

= −xrs
R3

(
1 +

rs
4R

)3
∂f1
∂y

= −yrs
R3

1− rs
4R(

1 + rs
4R

)3 , ∂f2
∂y

= −yrs
R3

(
1 +

rs
4R

)3
∂f1
∂z

= −zrs
R3

1− rs
4R(

1 + rs
4R

)3 , ∂f2
∂z

= −zrs
R3

(
1 +

rs
4R

)3

Before we continue by using the previously defined formula for the
Christoffel symbols we need to find the inverse of the metric which
is, since the matrix is diagonal, clearly the following

g−1 =


1
f1

1
f2

1
f2

1
f2


Remember that the formula for the Christoffel symbols are

Γk
ij =

1

2

n∑
l=1

gkl
(
∂gjl
∂xi

+
∂gli
∂xj

− ∂gij
∂xl

)
since the inverse matrix is diagonal the index l necessarily has to
be equal to k, additionally note that the formula is symmetric if the
indices i and j are swapped, thus we need to compute the following
expressions:

Γt
tt =

1

2
gtt
(
∂gtt
∂t

+
∂gtt
∂t

− ∂gtt
∂t

)
= 0

Γt
tx =

1

2
gtt
(
∂gxt
∂t

+
∂gtt
∂x

− ∂gtx
∂t

)
=

1

2
gtt

∂gtt
∂x

Γt
ty =

1

2
gtt
(
∂gyt
∂t

+
∂gtt
∂y

− ∂gty
∂t

)
=

1

2
gtt

∂gtt
∂y

Γt
tz =

1

2
gtt
(
∂gzt
∂t

+
∂gtt
∂z

− ∂gtz
∂t

)
=

1

2
gtt

∂gtt
∂z

Γt
xx =

1

2
gtt
(
∂gxt
∂x

+
∂gtx
∂x

− ∂gxx
∂t

)
= 0

Γt
xy =

1

2
gtt
(
∂gyt
∂x

+
∂gtx
∂y

− ∂gxy
∂t

)
= 0

Γt
xz =

1

2
gtt
(
∂gzt
∂x

+
∂gtx
∂z

− ∂gxz
∂t

)
= 0

Γt
yy =

1

2
gtt
(
∂gyt
∂y

+
∂gty
∂y

− ∂gyy
∂t

)
= 0

Γt
yz =

1

2
gtt
(
∂gjt
∂y

+
∂gty
∂z

− ∂gyz
∂t

)
= 0

Γt
zz =

1

2
gtt
(
∂gzt
∂z

+
∂gtz
∂z

− ∂gzz
∂t

)
= 0

Γx
tt =

1

2
gxx

(
∂gtx
∂t

+
∂gxt
∂t

− ∂gtt
∂x

)
= −1

2
gxx

∂gtt
∂x

Γx
tx =

1

2
gxx

(
∂gxx
∂t

+
∂gxt
∂x

− ∂gtx
∂x

)
= 0

Γx
ty =

1

2
gxx

(
∂gyx
∂t

+
∂gxt
∂y

− ∂gty
∂x

)
= 0

Γx
tz =

1

2
gxx

(
∂gzx
∂t

+
∂gxt
∂z

− ∂gtz
∂x

)
= 0

Γx
xx =

1

2
gxx

(
∂gxx
∂x

+
∂gxx
∂x

− ∂gxx
∂x

)
=

1

2
gxx

∂gxx
∂x

Γx
xy =

1

2
gxx

(
∂gyx
∂x

+
∂gxx
∂y

− ∂gxy
∂x

)
=

1

2
gxx

∂gxx
∂y

Γx
xz =

1

2
gxx

(
∂gzx
∂x

+
∂gxx
∂z

− ∂gxz
∂x

)
=

1

2
gxx

∂gxx
∂z

Γx
yy =

1

2
gxx

(
∂gyx
∂y

+
∂gxy
∂y

− ∂gyy
∂x

)
= −1

2
gxx

∂gyy
∂x



Γx
yz =

1

2
gxx

(
∂gzx
∂y

+
∂gxy
∂z

− ∂gyz
∂x

)
= 0

Γx
zz =

1

2
gxx

(
∂gzx
∂z

+
∂gxz
∂z

− ∂gzz
∂x

)
= −1

2
gxx

∂gzz
∂x

Γy
tt =

1

2
gyy

(
∂gty
∂t

+
∂gyt
∂t

− ∂gtt
∂y

)
= −1

2
gyy

∂gtt
∂y

Γy
tx =

1

2
gyy

(
∂gxy
∂t

+
∂gyt
∂x

− ∂gtx
∂y

)
= 0

Γy
ty =

1

2
gyy

(
∂gyy
∂t

+
∂gyt
∂y

− ∂gty
∂y

)
= 0

Γy
tz =

1

2
gyy

(
∂gzy
∂t

+
∂gyt
∂z

− ∂gtz
∂y

)
= 0

Γy
xx =

1

2
gyy

(
∂gxy
∂x

+
∂gyx
∂x

− ∂gxx
∂y

)
= −1

2
gyy

∂gxx
∂y

Γy
xy =

1

2
gyy

(
∂gyy
∂x

+
∂gyx
∂y

− ∂gxy
∂y

)
=

1

2
gyy

∂gyy
∂x

Γy
xz =

1

2
gyy

(
∂gzy
∂x

+
∂gyx
∂z

− ∂gxz
∂y

)
= 0

Γy
yy =

1

2
gyy

(
∂gyy
∂y

+
∂gyy
∂y

− ∂gyy
∂y

)
=

1

2
gyy

∂gyy
∂y

Γy
yz =

1

2
gyy

(
∂gzy
∂y

+
∂gyy
∂z

− ∂gyz
∂y

)
=

1

2
gyy

∂gyy
∂z

Γy
zz =

1

2
gyy

(
∂gzy
∂z

+
∂gyz
∂z

− ∂gzz
∂y

)
= −1

2
gyy

∂gzz
∂y

Γz
tt =

1

2
gzz
(
∂gtz
∂t

+
∂gzt
∂t

− ∂gtt
∂z

)
= −1

2
gzz

∂gtt
∂z

Γz
tx =

1

2
gzz
(
∂gxz
∂t

+
∂gzt
∂x

− ∂gtx
∂z

)
= 0

Γz
ty =

1

2
gzz
(
∂gyz
∂t

+
∂gzt
∂y

− ∂gty
∂z

)
= 0

Γz
tz =

1

2
gzz
(
∂gzz
∂t

+
∂gzt
∂z

− ∂gtz
∂z

)
= 0

Γz
xx =

1

2
gzz
(
∂gxz
∂x

+
∂gzx
∂x

− ∂gxx
∂z

)
= −1

2
gzz

∂gxx
∂z

Γz
xy =

1

2
gzz
(
∂gyz
∂x

+
∂gzx
∂y

− ∂gxy
∂z

)
= 0

Γz
xz =

1

2
gzz
(
∂gzz
∂x

+
∂gzx
∂z

− ∂gxz
∂z

)
=

1

2
gzz

∂gzz
∂x

Γz
yy =

1

2
gzz
(
∂gyz
∂y

+
∂gzy
∂y

− ∂gyy
∂z

)
= −1

2
gzz

∂gyy
∂z

Γz
yz =

1

2
gzz
(
∂gzz
∂y

+
∂gzy
∂z

− ∂gyz
∂z

)
=

1

2
gzz

∂gzz
∂y

Γz
zz =

1

2
gzz
(
∂gzz
∂z

+
∂gzz
∂z

− ∂gzz
∂z

)
=

1

2
gzz

∂gzz
∂z

Note that there is no magic or hidden step in how we compute
the Christoffel symbols, computing the Christoffel symbols just be-
comes a game of spotting all off-diagonal elements, i.e. gij where
i ̸= j, and removing them since they are zero and keeping all the
diagonal elements. Additionally the derivative of the metric with
respect to the first coordinate (time, t) is zero so those elements
also disappear. The Christoffel symbols are thus entirely written in
known functions.

If we write out the matrices of the Christoffel symbols we can
see a clear structure

Γt =
gtt

2


∂f1
∂x

∂f1
∂y

∂f1
∂z

∂f1
∂x
∂f1
∂y
∂f1
∂z



Γx =
gxx

2


∂f1
∂x

∂f2
∂x

∂f2
∂y

∂f2
∂z

∂f2
∂y

− ∂f2
∂x

∂f2
∂z

− ∂f2
∂x



Γy =
gyy

2


∂f1
∂y

− ∂f2
∂y

∂f2
∂x

∂f2
∂x

∂f2
∂y

∂f2
∂z

∂f2
∂z

− ∂f2
∂y



Γz =
gzz

2


∂f1
∂z

− ∂f2
∂z

∂f2
∂x

− ∂f2
∂z

∂f2
∂z

∂f2
∂x

∂f2
∂y

∂f2
∂z


With the Christoffel symbols computed we can rewrite the geodesic
equation in the form required for the numerical integration

γ̈k = −γ̇TΓkγ̇.

This can now be implemented with some appropriate Runge-Kutta
method to approximate geodesics on the space-time manifold.

Choosing a Runge-Kutta Method
The de facto standard adaptive Runge-Kutta method for approx-
imating solutions to differential equations is the Runge-Kutta45
method which is a fifth order method with an embedded fourth or-
der method to approximate the error. For our purposes this might
let us take far too large steps which we can see below.

γ0

γ1

γ2

γ(t)

Figure 3: Above is pictured a true geodesic, γ(t), and the approxi-
mation by a discrete set of points γ0, γ1 and so on.

In figure 3 we see an illustration of why taking too large steps
might be undesirable, when we compute if a geodesic collides with
an object in the scene we can only compute the collision point with
respect to the linear interpolation between two discrete points rather
than the true path. For this reason any collision point we compute
will necessarily be incorrect and the error will be larger the larger
the step size is.

For this reason we will step down one order of convergence and
use a fourth order convergent Runge-Kutta method with an embed-
ded third order convergent method which can be seen in the follow-
ing table:



0
0.5 0.5
0.5 0.5

0.75 0.75
1 1

1
6

1
3

1
3

0 1
6

2
9

1
3

0 4
9

0

These methods are not random and are quite standard although
this particular combination to produce an embedded method might
be non-standard while still being perfectly valid.

Once we have decided on a Runge-Kutta method we can use
the fact that we are solving a second order differential equation to
precompute parts of the update rule. Let the initial position and
tangent of the geodesic be

γ0 = p

γ̇0 = v

we then define the following function and variables

f(γ̇) =


−γ̇TΓtγ̇
−γ̇TΓxγ̇
−γ̇TΓyγ̇
−γ̇TΓz γ̇


k1 = f(γi)

k2 = f

(
γi +

h

2
k1

)
k3 = f

(
γi +

h

2
k2

)
k∗
3 = f

(
γi +

3h

4
k2

)
k4 = f (γi + hk3)

the update rule can then be written in the following way[
γi+1

γ̇i+1

]
=

[
γi
γ̇i

]
+

[ (
1 + 2

3
h
)
γ̇i

h
6
(k1 + 2k2 + 2k3 + k4)

]
with the error estimate

ei+1 =

[
h2

6
γ̇

h
6
(−k1 + 2k3 − 4k∗

3 + k4)

]
.

Ray-Scene Intersection
Once we have a way to approximate geodesics we can, from a point
and a direction, compute a new point on the geodesic To then com-
pute an intersection point we interpolate linearly between the two
most recent points. In figure 4 we can see how, even if the points we
compute lie exactly on the geodesic we are approximating a large
step size might lead to large errors in the determined intersection
points.

For this reason we have to choose an appropriate error tolerance
which does not give too large of a step size such that the intersection
points are substantially incorrect but not too small of a step size
such that each ray takes too long to compute.

The chosen error tolerances are the following

τ = 0.01

τ1 = 0.001

τ2 = 0.1

to make sure that the adaptive method actually stays within these
error tolerances it was compared to a Runge-Kutta method with a
fixed very small step size and the error was actually several orders
of magnitude lower than the desired error τ .

γi

γi+1

γ(t)

p̂

p

Figure 4: In the figure we see a geodesic, γ(t), two points that
lie on the geodesic and a linear interpolation between them. The
intersection points with some object has been marked. The true
intersection point is p and the approximate intersection point is p̂.

Results
The code which implements a relativistic ray marcher can be found
at the following link github.com/p-rosit/Relativistic Ray Marcher
and some examples can be seen in figure 5, 6, 7, 8 and 9. In figure 5
we can see the black hole with a flat disk around it, the disk can be
seen above the black hole due to the fact that light rays that go above
the black hole are bent downwards and hit the disk from above.

Figure 5: Black hole with a disk around it seen from up close.

Figure 6: Black hole with disk around it seen from the “front”.

In figure 8 we again see the black hole but this time the camera
is located 3 units of distance from the black hole and points towards
the origin, where the black hole is located. If we just look at these
two images it is hard to get a sense of what the scene actually looks
like and what objects are present in the scene since humans use the
image of a scene to build up a 3d model of what the scene looks



like. To compare we have also rendered the scene where the light
does not bend which can be seen in figure 7.

In this image we see that the event horizon is, in reality quite
small in the image but since light rays are drawn towards it light
rays that would otherwise not have passed the event horizon hit it
anyway. The disk can also be seen and it is, clearly, flat.

In figure 8 we note thus that we are actually seeing several disks.
This is due to the fact that light revolves around the black hole one
or more times. This effect can most clearly be seen in figure 5 where
we can see the disk several times. If we were to zoom in infinitely
far we would be able to see an infinte amount of copies of the disk
and we alternate between seeing it from above and below.

Figure 7: Black hole seen from the “front” but light does not bend.

In figure 8 and 9 the same scene has been rendered with differ-
ent textures where it becomes evident that the event horizon of the
black hole is a sphere and the scene is enclosed in a cube.

Figure 8: Black hole seen from the “front” with textures that make
the bending of light more apparent.

The grey lines present on the disk are uniformly distributed and
from figure 8 we can see that above the black hole the disk has been
stretched out which means that a relatively small part of the disk
constitutes the top part of the disk.

We can also see that both poles of the sphere can be seen in image
8 neither of which can be seen in image 9 and in particular the entire
surface of the sphere can actually be seen in image 8. Again, if we
zoom in to the border of the sphere in image 8 we will see the entire
surface of the event horizon an infinite amount of times.

In figure 9 we can see that the blue wall has a texture of a gradient
that is light blue on the bottom and dark blue on the top. With this
knowledge we can in figure 8 see that just above the disk the wall
is light blue which means that those light rays have hit the bottom
of the wall, this strengthens our claim that the part of the disk that
is seen above the black hole is the top of the disk behind the black
hole. Similarly we see that below the disk below the black hole the

Figure 9: Black hole seen from the “front” with where light does
not bend with the same textures as figure 8.

wall is dark blue which means that those light rays are hitting the
top of the wall which also strengthens our claim that we are seeing
the alternating copies of the top and bottom of the disk.

The same adaptive Runge-Kutta method which solved the
geodesic equation was set up to solve the Jacobi equation but this
turned out to not be tractable. The Jacobi equation is, or at least
seems to be, a stiff differential equation which would mean that an
explicit Runge-Kutta method is not appropriate to solve the Jacobi
equation. A stiff differential equation has no proper definition but
are characterized by the fact that unreasonably small step sizes are
needed to satisfy error tolerances as the solution is approximated.

Discussion
The renderer is able to render disks, spheres and planes because
those are very easy to texture and their intersection with a line seg-
ment is very easy to compute. In reality we would only actually
have to implement ray-triangle intersection to be able to image this
scene but this would have led to difficulties in implementation of
functions that were not the focus of this project.

We could, however, quite easily implement ray-triangle intersec-
tion which would enable us to image more general scenes but for
each step of the ray we have to check if it collides with anything,
by keeping track of which objects were close to hitting the ray last
time as well as collecting the objects in a bounding volume hierar-
chy this renderer could be greatly sped up if many objects are to be
rendered.

This renderer is physically correct as long as the camera is small
due to the fact that rays are not spawned from the camera centre,
they are rather spawned from the position of the pixel in world
space they are associated with. To be strictly physically correct
we would have to approximate the geodesic between the camera
position and the position on the camera plane to initialise the rays
correctly.

P

Figure 10: A light ray shot from the camera, P , where the light
does not bend can be seen in the full line and its tangent has been
drawn at that point. A light ray which bends has also been shot and
is the dashed line and its tangent is the dashed arrow. Both of these
rays intersect the camera plane at the same point.

In figure 10 we can see why it is important to compute the



geodesic from the where the ray is shot to where it intersects the
camera plane. If we do not compute the correct geodesic we will
not get the correct tangent for the ray we shoot from the camera and
the image will be wrong, this will only affect the image when the
camera is close to the black hole or if the camera is big.

The problem with finding the geodesic between two points is that
this is a boundary value problem rather than an inital value problem,
these are much harder to solve efficiently but it is still possible by
solving a non-linear system of equations with Newton’s method or
similar.

Future Work
In future work it would be interesting to implement this ray marcher
to work on a GPU as well as to fix the problem of finding the correct
geodesic between the camera position and a desired point on the
camera plane.

It would also be interesting to implement a bounding volume
hierarchy and ray-triangle intersections to be able to image more
general scenes.

At the moment the renderer only supports diffuse surfaces but it
would be interesting to implement reflections and refractions, light
sources as well as glow since the disk around the black hole would
look better if it glowed.

The metric induced by a rotating black hole has also been derived
and it is called the Kerr metric and light bends quite differently
for these types of black hole. The metric has a far less friendly
structure and deriving the Christoffel symbols becomes far more
tedious but it would be very interesting to implement a ray marcher
which images scenes induces by this metric.

In general the metric on the space-time manifold comes from the
Einstein field equations which is a set of partial differential equa-
tions which curve the manifold depending on many different pa-
rameters. If would be interesting to approximate the metric with
some finite element method and be able to not just image a scene
with a singular black hole but also a scene with several black holes
that are perhaps rotating as well as rotating around each other. This
is however most likely a project worthy of a PHD and will not be
happening any time soon.

References
[1] Sigmundur Gudmundsson. An Introduction to Riemannian

Geometry. Downloaded in December 2022. 2022. URL:
https://www.matematik.lu.se/matematiklu/
personal/sigma/Riemann.pdf.

[2] Arieh Iserles. A First Course in Numerical Analysis of Differ-
ential Equations. 2014.

Appendix
The rewriting of the Jacobi equation to a form more friendly for
numerical computations is quite tedious but for completeness we
include it here. Remember that the Jacobi equation is the following

∇γ̇(t)∇γ̇(t)J(γ(t)) +R(J(γ(t)), γ̇(t))γ̇(t) = 0

note that the Riemannian curvature tensor R has the following co-
ordinates

Rk
lij =

∂

∂i
Γk
jl −

∂

∂j
Γk
il +

n∑
m=1

Γk
imΓm

jl − Γk
jmΓm

il

computing these functions if extremely tedious but to check if com-
puting them by hand was worth it these functions were first com-
puted via numerical differentiation which is why the functions for
the Riemannian curvature tensor is not included in this report.

The second term of the Jacobi equation can be written in the
following way

R(J(γ(t)), γ̇(t))γ̇(t) =

n∑
m=1

n∑
l,i,j=1

Rk
lijJ

iγ̇j γ̇l ∂

∂xm

=

n∑
m=1

n∑
l=1

γ̇l
(
JTRk

l γ̇
) ∂

∂xm

where we have defined the matrix Rk
l such that the element at posi-

tion i, j is Rk
lij .

Now consider the the following expression:

∇γ̇J =
∑
k

(
J̇k +

∑
i,j

JiJjΓ
k
ij

)
∂

∂xk

which we know is correct since the derivation is the same as how we
derived the expression for ∇γ̇ γ̇. Then we can calculate the iterated
covariant derivative of the Jacobi field J :

∇γ̇∇γ̇J = ∇γ̇

(∑
k

(
J̇k +

∑
i,j

JiJjΓ
k
ij

)
∂

∂xk

)

=

n∑
k=1

(
γ̇

(
J̇k +

∑
i,j

JiJjΓ
k
ij

)
∂

∂xk
+

+

(
J̇k +

∑
i,j

JiJjΓ
k
ij

)
∇γ̇

∂

∂xk

)

=

n∑
k=1

(
γ̇
(
J̇k

) ∂

∂xk
+
∑
i,j

γ̇
(
JiJjΓ

k
ij

) ∂

∂xk

+

(
J̇k +

∑
i,j

JiJjΓ
k
ij

)(
n∑

a=1

γ̇a∇ ∂
∂xa

∂

∂xk

))

=

n∑
k=1

(
J̈k

∂

∂xk
+
∑
i,j

γ̇
(
JiJjΓ

k
ij

) ∂

∂xk

+

(
J̇k +

∑
i,j

JiJjΓ
k
ij

)(
n∑

a=1

γ̇a

n∑
b=1

Γb
ak

∂

∂xb

))

=

n∑
k=1

((
J̈k +

∑
i,j

γ̇
(
JiJjΓ

k
ij

)) ∂

∂xk

+

(
J̇k +

∑
i,j

JiJjΓ
k
ij

)∑
a,b

γ̇aΓ
b
ak

∂

∂xb

)

=

n∑
b=1

((
J̈b +

∑
i,j

γ̇
(
JiJjΓ

b
ij

)) ∂

∂xb

+
∑
a,k

(
J̇k +

∑
i,j

JiJjΓ
k
ij

)(
γ̇aΓ

b
ak

∂

∂xb

))

=

n∑
b=1

(
J̈b +

∑
i,j

γ̇
(
JiJjΓ

b
ij

)

+
∑
a,k

(
J̇k +

∑
i,j

JiJjΓ
k
ij

)(
γ̇aΓ

b
ak

)) ∂

∂xb

Here we need to compute the result of the vector field γ̇ applied to
the function JiJjΓ

b
ij which is the directional derivative along the



tangent. To compute this we need to apply the product rule:

γ̇
(
JiJjΓ

b
ij

)
= γ̇ (Ji) JjΓ

b
ij + Jiγ̇ (Jj) Γ

b
ij + JiJj γ̇

(
Γb
ij

)
= J̇iJjΓ

b
ij + JiJ̇jΓ

b
ij + JiJj γ̇

(
Γb
ij

)

here we also need to compute the result of γ̇
(
Γb
ij

)
which we can

do in the following way

γ̇
(
Γb
ij

)
=

(
n∑

m=1

γ̇m ∂

∂xm

)(
Γb
ij

)
=

n∑
m=1

γ̇m ∂Γb
ij

∂xm

Thus we see that the full formula becomes

∇γ̇∇γ̇J =

n∑
b=1

(
J̈b +

∑
i,j

(
J̇iJjΓ

b
ij + JiJ̇jΓ

b
ij + JiJj

n∑
m=1

γ̇m ∂Γb
ij

∂xm

)

+
∑
a,k

(
J̇k +

∑
i,j

JiJjΓ
k
ij

)(
γ̇aΓ

b
ak

)) ∂

∂xb

The Jacobi equation is thus the following

0 =

n∑
b=1

(
J̈b +

∑
i,j

(
J̇iJjΓ

b
ij + JiJ̇jΓ

b
ij + JiJj

n∑
m=1

γ̇m ∂Γb
ij

∂xm

)

+
∑
a,k

(
J̇k +

∑
i,j

JiJjΓ
k
ij

)(
γ̇aΓ

b
ak

)
+
∑
l

γ̇l
(
JTRb

l γ̇
)) ∂

∂xb

this formula should be equal to zero which means that every coor-
dinate has to be zero which means that we get the following set of
n equations

0 = J̈b +
∑
i,j

(
J̇iJjΓ

b
ij + JiJ̇jΓ

b
ij + JiJj

n∑
m=1

γ̇m ∂Γb
ij

∂xm

)

+
∑
a,k

(
J̇k +

∑
i,j

JiJjΓ
k
ij

)(
γ̇aΓ

b
ak

)
+
∑
l

γ̇l
(
JTRb

l γ̇
)

many of these terms can be simplified by writing them as matrix

products instead since vTAv =
∑

ij viAijvj , thus we can write

0 = J̈b + J̇TΓbJ + JTΓbJ̇ + JT

(∑
m

γ̇m ∂

∂xm
Γb

)
J

+
∑
a,k

(
J̇k + JTΓkJ

)(
γ̇aΓ

b
ak

)
+
∑
l

γ̇l
(
JTRb

l γ̇
)

= J̈b + 2J̇TΓbJ + JT

(∑
m

γ̇m ∂

∂xm
Γb

)
J

+
∑
a,k

(
J̇kγ̇aΓ

b
ak + JTΓkJγ̇aΓ

b
ak

)
+
∑
l

γ̇l
(
JTRb

l γ̇
)

= J̈b + 2J̇TΓbJ + JT

(∑
m

γ̇m ∂

∂xm
Γb

)
J

+ J̇TΓbγ̇ +

(∑
k

(
JTΓkJ

)(
Γbγ̇

))
+
∑
l

γ̇l
(
JTRb

l γ̇
)

= J̈b + 2J̇TΓbJ + JT

(∑
m

γ̇m ∂

∂xm
Γb

)
J

+ J̇TΓbγ̇ +
(
Γbγ̇

)∑
k

(
JTΓkJ

)
+
∑
l

γ̇l
(
JTRb

l γ̇
)

Finally we see that the complete formula for the Jacobi equation is
the following:

0 = J̈k + 2J̇TΓkJ + JT

(∑
m

γ̇m ∂

∂xm
Γk

)
J

+ J̇TΓkγ̇ +
(
Γkγ̇

)∑
m

(
JTΓmJ

)
+
∑
l

γ̇l
(
JTRk

l γ̇
)

due to the laborious nature of deriving this formula and the fact
that I have not been able to find it in any literature it would not be
too surprising if some logical error has been able to sneak into this
formula but it is, to my knowledge, correct.


