
Real-time GPU-based fluid simulation and rendering
Emil Manelius* Teodor Åberg†

Lund University
Sweden

Abstract
In this paper we discuss our implementation of a 3D fluid simulator
based on the ideas of [Stam 2001] and [Fedkiw et al. 2001] with as
much of the computational load on the gpu as possible in order to be
able to run the simulation in real time. To render the smoke we use
a ray-marching setup and let opacity be defined by the accumulated
density along each ray as described in [Nguyen and Corporation
2008].

1 Introduction
Behaviours of natural phenomena are often dictated by complicated
relations that can be expensive to simulate. When dealing with real-
time graphics it is not only necessary that everything looks good but
that it is also responsive. Based on [Stam 2001] and [Fedkiw et al.
2001] we try to implement these ideas on the GPU to be able to get
realistic simulation while still retaining acceptable framerates.

2 Theory
2.1 Physics & Numerics
The basis of the simulations for the smoke is directly based on a
combination of the simulations discussed in [Stam 2001] and [Fed-
kiw et al. 2001]. The Fundamental equation used here is the incom-
pressible Euler equation{

∂Ū
∂t

= (Ū · ∇)Ū +∇p+ F̄

∇ · U = 0

as in [Fedkiw et al. 2001].
To implement the scheme a few different differential equations

must be handled. The first of these are the most simple

dy(x, t)
dt

= f(t, x, y(x, t)) y(x0, 0) = y0

which can be approximated using a explicit Euler step with a
time step ∆t

y(x0,∆t) ≈ y0 + f(0, x0, y0) ·∆t

The second type of equation needed to be solved are advection
equations on the form

∂V (x, t)

∂t
= −W · ∇V

which can be solved using the methods of characterisitcs described
in [Fedkiw et al. 2001], where the approximate solution is

V (x0,∆t) = V (P (x0,−∆t), 0)

where P (x0,−∆t) is calculated by preforming an Euler step as
described above with f = W and a time step of −∆t.

*e-mail: emil.manelius@gmail.com
†teodor.aberg@gmail.com

The final differential equation that needs to be handled is the
Poisson equation

∆Q = B

The main idea here is that the operator ∆ can be discretized
based on the imposed boundary conditions and represented as a
matrix. As in [Fedkiw et al. 2001] this linear system was solved
using the conjugate gradient method.

With these numerical methods layed out the solver can be con-
structed. Starting from some velocity field Ūn = W0, density dis-
tribution ρn and Temperature distribution Tn at time n. First the
driving force is calculated as

F̄bouy = −αρnẑ + β(Tn − Tamb)ẑ

F̄conf = εh
(
N × ω

)
with

{
ω = ∇× Ūn

N = ∇|ω|
|∇|ω||

F̄ = F̄bouy + F̄conf

Where α, β and ε are constants chosen to give desired behaviour
for the simulation, Tamb is the ambient temperature, ẑ is the cho-
sen upward direction in the simulation and h is the distance be-
tween grid points in the discretization. F̂bouy is to give the smoke
bouyancy based on its temperature and density and F̂conf is to in-
troduce rotation into the field that otherwise dissipated due to nu-
merical inaccuracies.

W1 = W0 +∆tF̄tot

Once the forces have been applied the field W1 is advected with
its own velocity

∂W1

∂t
= −W1 · ∇W1

which being solved with the method described earlier gives

W2(x) = W1(P (x,−∆t))

After this the solution can be projected such that it is divergence
free. This is done by solving

∆p = ∇ ·W2

for p and then
w3 = w2 −∇p

is the final updated velocity. The density and temperature are
then update by advecting the previous fields along the updated ve-
locity.

ρn+1(x) = ρn(P (x,−∆t))

Tn+1(x) = Tn(P (x,−∆t))

For the velocity field homogenous Dirichlet conditions apply for
directions perpencular to the boundary and homogenous Von Neu-
mann conditions apply to the pressure when solving the Poission
Equation. The discretization of ∆ is given by

∆Ui,j,k =
1

h2

(
Ui+1,j,k + Ui−1,j,k + Ui,j+1,k + Ui,j−1,k

+ Ui,j,k+1 + Ui,j,k−1 − 6Ui,j,k

)
with some modifications at boundaries to ensure that conditions

are met, where h is the grid distance. All quantities are calculated
at the centers of voxels.

2.2 Rendering Smoke
The smoke is rendered using a ray marching approach similar to the
one outlined in [Nguyen and Corporation 2008]. We model smoke
as having some base color and a transparency that is proportional
to the density of the smoke at each voxel.

3 Implementation
3.1 Rendering
The 3D-texture is attached to a model cube that is placed some-
where in the scene and rays are sent from the eye to the cube. To
simplify our render step slightly, we align the model coordinates of
the cube with the normalized texture coordinates of the 3D textures
we store smoke data in. We march the rays through the cube us-
ing some fixed step size and accumulate color along the ray, setting
the alpha value at each sample proportional to the smoke density in
the 3D texture at that point. In order to do this, we need to com-
pute the first intersection point with the cube for each ray that is
sent from the eye. This is done by rendering the cube to a texture
with dimensions identical to that of the current viewport with the
backfaces culled. Each pixel in the texture is colored with the tex-
ture coordinates of the cube fragment being rendered. In a second
pass, we cover the near plane of the view furstum with a screen-
sized quad and render this quad using our raymarching shader. The
shader will look up the color of each fragment from the texture gen-
erated in the previous step. If the color is empty, the ray from the
eye through the fragment being rendered did not intersect the cube,
and we do nothing. If the color value is nonempty, that means a
ray from the eye through the fragment intersected the cube at the
coordinate encoded in the texture, and we should start ray march-
ing from that point. The coordinate we read from the cube is in the
cube’s texture space, and we want to do our ray march in this co-
ordinate space since that simplifies the sampling of the 3D-texture.
The camera position is transformed to the cube’s model coordinate
space (which in our case is the same as it’s 3D-texture space) and
we obtain a direction vector for our ray dir as

dir = normalize(intersection_point -
camera_texture_space);

Since we now have a ray in the texture space of the 3D-texture
we want to sample, we can perform ray marching in the following
fashion

vec4 march_ray(vec3 start, vec3 dir,
float step_size)

{
vec4 accumulated_color = vec4(0, 0, 0, 0);
vec3 position = start;
while (inside_cube(position)) {

float density = sampleDensity(position);
accumulated_color += omega *

vec4(base_color,
k * density);

position = position + dir * step_size;
}
return accumulated_color;

}

where ω is some factor to ensure that the final accumulated color
is in a reasonable range and k a scale factor for the transparency
of the smoke. To sample density, we sample the texture containing
the smoke density at the point position since our ray is already in
the correct texture space. To determine if we are in the cube, we
perform a simple bounds check on the current position (coordinates
in the range [0, 1] lie inside the cube). With alpha blending enabled
the smoke can be placed in a background scene by performing the
raymarching step last in the render order. Our current implemen-
tation does not support placing the smoke behind opaque objects
in the scene, but this could be addressed by using depth maps in
the render pass calculating the ray-cube intersections: if the dis-
tance from the eye to the cube front face is larger than the distance
looked up from a depth map we store a zero instead of the texture
coordinates.

3.2 Simulation
In order to try to make the simulation run in real time a majority
of the simulation was implemented using compute-shaders to run
on the GPU. Implementing the euler-step and advection is rather
straight forward as these calculations are local. To calculate deriva-
tives a symmetric approximation was used where applicable and
forward/backward derivatives were used at boundaries as necessary.
Trilinear interpolation is used to evaluate all quantities outside of
grid points.

For the implementation of the conjugate gradient solver the steps
needed for each iteration was implemented as separate compute
shaders so that while the iteration is done on the CPU a majority
of matrix and vector operations are done on the GPU. The neces-
sary operations implemented were a scalar product, multiplying a
vector U with the discretization of the Laplacian and taking linear
combinations.

The scalar product was implemented by letting a compute shader
calculate the partial sum of the scalar product in a 4× 4× 4 subset
of the grid and writing all these values to a texture getting the fi-
nal scalar product by taking the sum of the resulting outputs on the
GPU. The number 4 can be increased if it turns out that the summa-
tion of the resulting texture is a bottleneck for the simulation.

The structure of the discrete approximation of the Laplace oper-
ator means that multiplication with it can simply be implemented
without having to do an explicit matrix multiplication. For an ar-
bitrary matrix it could be necessary to for each output element go
through each of the input elements, but this is not necessary in this
case. From the expression presented in the theory only 7 elements
have to be summed for each output element when calculating this
matrix multiplication meaning each element of the output vector
∆U can be computed in constant time.

Linear combinations were computed by taking two textures as
inputs and scalars and writing the linear combination of elements at
some index to this index in the output texture.

In order to get the conjugate gradient solver to converge it was
necessary to impose a Dirichlet condition at a single boundary point
as the Laplacian is not full-rank if this is not the case.

4 Results
Generally we were satisfied with the results we were able to gen-
erate. The behaviour when colliding with the boundary seems to
be correct with the simulation behaving as if the smoke was col-
liding with a solid plane. The effects effect of incresing ε is also
clearly visible as more small-scale vortices can be seen, which is as
expected.

For N = 32 we were able to run and render the simulation at 15
FPS. Increasing N decreased the frame rate in line with the expected
increase in computational complexity: The size of the density tex-
ture scales like N3. A summary of the performance for different
values of N is listed in table 1 below.

(a) Initial state

(b) Interaction with boundary

(c) State after majority of boundary interaction

Figure 1: Screenshots of smoke simulation in different states. Sim-
ulates a rising ball of smoke in a closed cube.

(a) Simulated mushroom cloud

Figure 2: Screenshot of a mushroom-cloud simulation.

N Average framerate
32 16.5
44 6.5
52 3.8

Table 1: Frame rates depending on granularity of the grid. Ran on
laptop with a NVIDIA GeForce GTX 1650

5 Discussion
We found that a simulation size of N = 32 provided a reason-
able trade-off between visual quality and performance. 15 FPS
seems reasonable when comparing the frame rates and simulation
sizes obtained in [Stam 2001], considering the hardware difference.
While slighlty higher performance would be required for the sim-
ulation to qualify as fully real time with modern standards, we
believe this would be achievable with currently available stronger
hardware.

We see a clear banding pattern when rendering our smoke. This
is an artifact of the ray marching approach used for rendering and
similar effects are described in [Nguyen and Corporation 2008]
which we based our implementation on. The suggested solution in
[Nguyen and Corporation 2008] is increase the sampling frequency
or use a higher order filter when sampling the smoke texture.

We also attempted to implement the rendering algorithm de-
scribed in [Fedkiw et al. 2001] in which a light source effects the
luminescence of the smoke based on the viewing angle but were
not able to make if fully work with the rest of the pipeline that we
had set up for general density distributions, though we were able to
make it look convincing for a uniform density distribution

Some improvements that could be plugged into the current
pipeline could be to use some non-linear interpolation in order to
determine that values of positions that are not voxel-centers more
smoothly. Another is to implement support for smoke-solid inter-
action inside of the grid by tracking elements inside the simulation-
volume and handling the boundary conditions and how deep the
ray-marching. These ideas are discussed in [Nguyen and Corpora-
tion 2008] and [Fedkiw et al. 2001]

References
BOLZ, J., FARMER, I., GRINSPUN, E., AND SCHRÖDER, P. 2003.

Sparse matrix solvers on the gpu: Conjugate gradients and multi-
grid. ACM Trans. Graph. 22 (07), 917–924.

FEDKIW, R., STAM, J., AND JENSEN, H. 2001. Visual simulation
of smoke. ACM SIGGRAPH2001, 2001. (06).

NGUYEN, H., AND CORPORATION, N. 2008. GPU Gems 3. No. v.
3 in Lab Companion Series. Addison-Wesley.

STAM, J. 2001. Stable fluids. ACM SIGGRAPH 99 1999 (11).

