High Performance Computer Graphics

Project Report

Interior Parallax Occlusion Mapping

Eliseu Amaro, el6033am-s
Edwin Gustafsson, ed3047gu-s

December 2022

1 Introduction

The goal of our project was to combine two differ-
ent graphical techniques, Parallax Occlusion Mapping
(POM) and Interior Mapping, in order to bring an il-
lusion of depth to interior mapped walls.

POM is a technique that uses height information
to simulate a parallax effect with the possibility of
self-occlusion to give flat objects the illusion of hav-
ing more complex geometry. POM can be expanded
upon to produce self-shadowing which accentuates the
depth effect.

Interior mapping is a technique that maps 5 tex-
tures to a flat surface, giving it the appearance of a
cuboid room interior that can be seen through the sur-
face.

Interior mapping is featured in many games, such
as Insomniac games’ ’Spider-Man’ (2018). But we can
not find an example of it being combined with Par-
allax Occlusion Mapping for added detail. This fact
motivated us to try it for this project.

2 Algorithms

Height and depth may be used interchangeably in this
text, as the textures are defined as height maps, but
the algorithms use depth values that are the inverse of
height: depth = 1 — height.

2.1 Parallax Occlusion Mapping

The POM algorithm works by stepping along the view
direction and checking for intersections with the height
map, similarly to a ray tracing algorithm.

The view vector is translated into AUV coordi-
nates, which is the change in texture coordinates when
one step is performed and one depth layer is advanced.
The size of this step is determined by a predetermined
depth layer resolution and the height scale, which de-
fines the apparent distance between the geometry sur-
face and the deepest point of the simulated surface
defined by the height map.

A collision is detected when the current depth map
value is less than the depth of the current ray position,
checked at every step along the ray.

After a collision is detection, the last step is linearly
interpolated along to approximate a more accurate col-
lision. The result of this interpolation are the final tex-
ture coordinates used to sample albedo, normal, and
any other texture map. Code by Victor Gordan was
referenced for the base POM algorithm, which helped
give us a swift start to the project. [1]

i
1

Figure 1: Comparison without and with the last inter-
polating step.

2.1.1 Hard Shadows

Hard shadows is the naive approach to POM self-
shadowing. When the POM algorithm is done and has
provided a new set of texture coordinates, we can start
from that position in a new ray that is projected along
the direction to a light source, and if the ray intersects
the height map, it is considered to be in shadow. This
approach is not ideal because intersections are checked
in discreet steps, which will cause a very obvious alias-
ing effect when the occluder is very near the shadowed
surface.

Figure 2: POM with hard shadows

2.1.2 Soft Shadows

Soft shadows are performed as described in 'Dynamic
parallax occlusion mapping with approximate soft
shadows’.[2]

Soft shadows are handled similarly to hard shad-
ows, except instead of finding the first occlusion, we
trace the entire ray until it escapes the surface of the
actual geometry. The largest occlusion is recorded
along with it’s distance to the starting point, the
largest occlusion is the point on the ray that is the
deepest as compared to the height field. The informa-
tion of the distance from the occlusion and the size of
the occlusion can be used to approximate the penum-
bra size of the shadow using the equation shown in
figure 3.

o Wa(ddy)
-

Light source

Blocker

Surface

Figure 3: Penumbra size approximation for area light
sources, Where w; is the light source width, w,, is the
penumbra width, d,. is the receiver depth and dy, is the
blocker’s depth from the light source.|2]

The approximated penumbra width is then trans-
lated to a shadow factor between 0 and 1 that is mul-
tiplied onto the fragment colour. Using the following
function:

Wp

0 if1— —2 <0
T 02w, S
w w
_l1- % o<1 — 2 <
s(wp) 024 +w, = — 02+uw,
w
1 if1- 2
T 02w,

This function is based on the ”fast sigmoid” func-
tion. [3] The number 0.24 is changed from 1 because
it changes the curve of the function, and in this case
increases the contrast of the shadows.

Figure 4: POM with soft shadows

2.1.3 Dynamic Layer Resolution

A system for dynamically adjusting the layer resolution
for POM and shadows was developed as an optimiza-
tion. It is realized as a function with two variables, the
ray’s angle from the surface normal 8 and the distance
between the fragment and camera d, and a set of range
constants that are interpolated between, Lin, Lmax
and Lg

min *

d d

L= (l—COS 9)(Lmlnm+Lma$(1__>)+L9mm cos

3+d

The range constants are set to appropriate values de-
pending on the requirements of the textures used. A
high frequency detail in height maps will need a higher
resolution to look acceptable than height maps with
low frequency shapes.

150

100

Number of layers

50

Ray ar 9\9(om NO val, | adiar s)
y

(//%‘/

Figure 5: Layer resolution as a function of camera dis-
tance and ray angle from normal. Range constants:
Lmin = 167 Lmam = 1807 LG =4

min

2.2 Interior Mapping

When rendering dense cities, it becomes impossible to
render inner building detail in real time. A major
contributing factor to this comes in the presence of
windows, which would normally let you peer into the
rooms inside, leading to exponentially more detail to
be rendered.

Interior mapping has allowed various games to give
the illusion of inner spaces to great effect. Nonetheless,
prior implementations lacked depth, which we hoped
to employ using POM as explained earlier.

In order to keep the implementation simple, and
allow this technique to be used in conjunction with
POM, the fragment shader was constructed in such a
way as to section each wall calculations from one an-
other.

2.2.1 Theory

Floor and ceiling are obtained via the following y-axis
or horizontal plane system of equations:

y=D
{(x,y,z>=P+Jr-v .
Where:

e D is equal to the predefined room height;

e P is a known point which is part of the ray traced
from the camera to the quad’s surface;

e 7 is some ratio of the ray vector that meets the
intersection point of the closest horizontal plane
hit after the quad’s intersection;

This can be simplified as the following:

y = cetling_y
(z,y,z) = camera_pos + 1 - (frag_pos — camera_pos)

(2)
Which solved for }, becomes:

T = (ceiling_y—camera_pos.y)/(frag_pos—camera_pos)
(3)
Finally, we can retrieve which 2D point on the plane
located at y = D we hit. This point, when normalized
to a specified room size, is our texel coordinate.

(z,z) = (camera_pos.zz) +1-(frag-pos—camera_pos)
(4)

Our 1 y value can then be compared against half
the room’s height, if greater then it’s a ceiling, if lower
then it’s the floor.

The same method can be used for a vertical plane
on the z-axis, forming the left and right walls. And
then again, for a vertical plane on the z-azis, retriev-
ing us the back wall.

2.3 Light scattering

The light scattering implementation follows a ray,
traced from the light position to the camera’s posi-
tion. An inverted opacity layer of the window’s tex-
ture allows us to know which rays hit the ”glass” of
the window.

We start by painting these hit points, and then fol-
low the direction of the light ray, painting this ”hit
plane” again, and again at a known interval rate with
a diminished intensity each step of the way.

2.4 Combination

To combine interior mapping with POM, a function
was created that performs POM based on the follow-
ing input parameters:

1. vec2: Texture coordinates of the interior wall,
supplied by the interior mapping algorithm.

2. vec3: Normal vector of the interior wall.

3. vec3d: View vector, transformed to interior wall
space with a rotation matrix.

4. float: Height scale, for individual height scales
for each wall.

5. int: Wall index, a numerical representation for
which wall texture should be sampled.

This function returns UV coordinates produced by
POM for the sampled interior wall.

Soft shadows were implemented with a similar func-
tion, inputting UV coordinates retrieved from POM,
and using the vector to the light source instead of the
view vector. The function returns a shadow factor.

For each wall, a view matrix transform is applied, in
order to translate us into each wall’s space. Then, since
we know our UV coordinates, and normals, we can use
each of the above functions to apply the parallax oc-
clusion mapping technique as well as soft shadows unto
the wall in question.

3 Results

The textures used to demonstrate our shader were as-
sembled using assets sourced from Quixel Megascans,
issued under a personal licence. The results are demon-
strated on a single quad, using 6 albedo maps, 6 normal
maps, 5 height maps, and 1 opacity map. All textures
are 2048 pixels by 2048 pixels.

Figure 6: Interior mapping with normal mapping only. Figure 8: Interior mapping with POM and soft shad-
OWs.

Figure 7: Interior mapping with normal mapping only, Figure 9: Interior mapping with POM and soft shad-
window wall hidden. ows, window wall hidden.

3.1 Performance comparison

The following performance metrics were taken from
nvtop, a command line GPU process monitor-
ing tool (https://github.com/Syllo/nvtop). Uses
NVIDIA’s Management Library (NVML) API for its
information gathering.
3.1.1 Testing rig

e OS Arch GNU/Linux

e Kernel 6.1.1-zen

e CPU Intel i7-12700H (20) @ 4.6GHz
e GPU NVIDIA Geforce RTX 3070 Ti Laptop

3.1.2 Testing parameters

e Baseline wall’s were created from their respec-
tive heightmaps, sampled on a 320x320 grid in
Blender, no textures applied, and basic lighting

e POM used a minimum of 1 layer, and a maxi-
mum of 256 layers

e Light scattering used 42 layers

3.1.3 Data

Baseline statistics show very high GPU utilization
(92%), with a reported power usage of 141W.

Figure 10: Baseline room with actual geometry

Interior mapping by itself shows relatively low GPU
utilization (42%), with a reported power usage of 36W.
While the rendered output is comparatively simple in

detail, it also shows that we’ve still got a lot of head-
room.

Figure 11: Interior mapping only

Interior mapping with parallax occlusion mapping
done for each of its 5 walls still shows a relatively low
GPU utilization (51%), with a reported power usage of
74W. Impressive results considering that we’ve essen-
tially as good of an output as shown under our baseline.
While geometric detail is comparable, texture work is
also presented. Contrary to baseline.

Judging solely by power usage, the target baseline
was twice as less efficient, proving the potential of this
technique for real time rendering applications.

Figure 12: Interior mapping + POM

Upon enabling soft shadows, GPU utilization grew
by 10%, reporting a power usage of 81W. Nonetheless,
improvements in image depth perception more than
make up for it.

Figure 13: Interior mapping + POM + soft shadows

Light scattering further bumped GPU utilization
by 10%, making it hover around 70% GPU utiliza-
tion. Power usage is now reported at 93W.

Its effect further grounds the scene, to great ef-
fect. However, the power creep begins to suggest that
further fidelity improvements will lead to diminishing
returns in overall performance.

24,41 MiB/s

Figure 14: Interior mapping + POM + soft shadows
+ light scattering

When gathering these results, it became clear that
our light scattering implementation required further
tweaking.

The number of samples used was notably dimin-
ished, from 100 to just 32. Decay rate, sample density
and weight was lowered as a result. Light intensity
got halved as well. In the end, similar results were ob-
tained but the performance benefits were substantial.
Goes to show that simple knob adjustments go a long
way when using this technique.

4 Discussion

We are very satisfied with the result of our algorithm
visually. The performance should be further investi-
gated before concluding if this method would be suit-
able for use in games. A limiting factor would probably
be the amount of textures used, as our method requires
albedo, height and normal textures for each wall, this
results in a large memory footprint.

It is important to note that this method requires
the boundary condition of a height value equal to 1 for
the interior wall height textures, this stops repetition
of the texture from being visible, an effect commonly
seen with POM.

4.1 Potential improvements

Currently, some direction vectors and rotation matri-
ces are hard-coded, these could be improved to depend
on the orientation of the geometry surface so that sur-
faces of any orientation produces correct results.

In addition, if this technique were to be coupled
with parallax corrected cube maps for the room’s in-
terior mapping, graphical artifacts seen on the wall’s
edges could be mitigated. If not entirely bypassed.
These artifacts come from the fact that we're creat-
ing intrusions unto the wall, instead of extruding it,
making connecting edges a difficult endeavour.

References

[1] Victor Gordan. Opengl tutorial 28 - parallax occlu-
sion mapping. https://youtu.be/LrnE5f3h2SU,
2021. Accessed on November 29, 2022.

[2] Natalya Tatarchuk. Dynamic parallax occlusion
mapping with approximate soft shadows. 2006.

[3] Antti Huima. Fast sigmoid algorithm.
https://stackoverflow.com/questions/
10732027/fast-sigmoid-algorithm, 2012.

Accessed on December 5, 2022.

