
EDAN35: A Snow Particle System
Johan Pettersson∗ Dennis Jin†

Lund University
Sweden

Abstract
In this paper, we describe the implementation of a particle system
intended for approximating and displaying snow and other forms
of precipitation such as rain and hail. The results are showcased,
performance measurements are given, and some possible improve-
ments are discussed.

Figure 1: Snow in the Sponza atrium scene.

1 Introduction
Particle systems are ubiquitous in many modern visual applica-
tions: they are used for common effects such as explosions, magic,
weather, and much more. They can be implemented so that most
of the particle update logic is computed on the CPU, or alterna-
tively on the GPU. The latter allows for far higher performance
with greater numbers of particles due to avoiding recurring memory
transfers of particle state from CPU to GPU, and state update com-
putation on the CPU; however, a disadvantage is the complication
of access to sparse representations of the scene for e.g. collisions
between particles and scene geometry, and necessitating the use of
buffers of fixed size for all particle state.

In this implementation a non-screenspace solution for collisions
was implemented, allowing for particles to fall and collide with the
scene outside of the view frustum. The test scene was the Sponza
atrium from Crytek, chosen because of its reasonable geometric
complexity suited for demonstrating the scene geometry collision
detection.

2 Algorithms
2.1 GPU-side particle updates
Transform feedback is used to update the particles entirely on the
GPU, in conjunction with a geometry shader to enable conditional
discarding of particles beyond the bounds of the scene (as deter-
mined by the CPU code and passed to the shader in uniforms) and
particles that have collided with scene geometry and been at rest for
a certain length of time.

∗e-mail: dat14jpe@student.lu.se
†e-mail: dat14dji@student.lu.se

Each particle stores its position, velocity, lifetime (the time since
the particle was spawned), and type (used only for distinguishing
between inactive particles that have collided with the scene geom-
etry and those that haven’t). On each frame, every moving parti-
cle’s velocity v is updated by adding the contributions from sev-
eral forces (gravity, drag force (proportional to speed squared), and
wind), and the position is updated to pt = pt−1 + ∆v, where ∆ is
the time since last frame.

2.2 Collisions
At program startup, the CPU code computes a collision octree for
the scene, encoding whether or not each node is intersected by trian-
gles down to a chosen octree depth (set to 10 for the Sponza scene
loaded by the demo, using Tomas Akenine-Möller’s triangle-box
overlap testing code [Akenine-Möller 2001]). This sparse octree
is then used to construct a non-sparse 3D texture that encodes the
empty-or-intersected status of each volumetric element in the scene;
the particle update geometry shader then samples this texture at the
location of each particle, stopping the particles that are in volumet-
ric elements intersecting the scene triangles.

2.3 Motion blur
In reality, both cameras and the human eye do not usually sam-
ple incoming light from just an infinitesimally short span of time;
rather, they sample continuously, an average over some time. Due
to this, fast-moving objects (relative to the camera/eye) appear to
streak in the direction of motion: this effect is known as motion
blur and is required for “realistic” depiction of fast-moving objects.

In this particle system, the render geometry shader approximates
a particle’s position in the last frame as its current velocity multi-
plied by the frame time delta subtracted from the current position,
and stretches the particle so that it covers the intervening space;
this is a crude approximation of real motion blur but provides an
improved sense of the direction and speed of motion.

3 Results
3.1 Memory requirements

The collision texture requires res3

8
bytes of storage, where res is the

resolution (a single bit is sufficient for coding empty/non-empty, so
eight nodes fit in one byte). At res = 10, this is 128 MiB; accuracy
can be traded for memory by lowering the resolution.

A single particle stores its position, velocity, lifetime and type;
this is eight single-precision floating point numbers in total, mean-
ing a single particle requires 32 bytes. The particle buffers are al-
located once with a fixed maximum size; at a size of 2 million, the
two buffers combined require 64 MiB.

3.2 Performance
Due to some inefficiency in the CPU-side Bonobo code, the largest
part of each frame is spent issuing the scene geometry draw calls.
Disabling V-sync and scene geometry rendering allowed the mea-
suring of an upper bound on the time spent on the particle system;
running at 2560x1440 resolution on an Intel i7 3770k CPU and an
NVIDIA GTX 1080 Ti GPU, the following upper bound times were
measured for different particles-per-second spawn rates:



Figure 2: Fast-moving (sideways, as seen from this perspective)
snow particles.

Figure 3: From left to right: 1/10 exposure; normal exposure; 10
times exposure.

Spawn rate Frame time FPS (= 1000 / frame time)
1000/s 0.8 ms 1200

10 000/s 0.8 ms 1200
100 000/s 1.1 ms 900
300 000/s 2.4 ms 410

(no significant difference between the first two measurements
was recorded)

4 Discussion
4.1 Update
The particle system can be extended to work in a large world: it
is computationally prohibitive to simulate in detail (that is, per-
particle) areas much larger than the Sponza scene. The particle
system can therefore be re-centered around the current camera lo-
cation on each frame, with a fixed extent beyond which particles
would be discarded (as they move farther away from the camera
than the fixed extent, rather than beyond the entirety of the world).
A problem with this is determining where to spawn new particles
and with which initial state: unless indoor precipitation is accept-
able, particles can no longer simply start at the top of the scene
and be allowed to fall all the way down, but instead, particles must
appear to have been in existence for a long time before they were
actually spawned. Determining possible spawn locations for new
particles can be done on the CPU.

The collision texture required for each scene could be precom-
puted to minimize runtime overhead; another option would be to

Figure 4: High terminal velocity, low alpha and low size result in a
look closer to rain.

use a GPU voxelization algorithm, or perhaps reusing voxel data
from another part of the rendering (such as voxel-based global illu-
mination, if present).

4.2 Render
As for the rendering, the particles in this implementation aren’t af-
fected by lights; the quality can be improved by rendering them
back-to-front (for correct blending), and using a clustered deferred
rendering system to take into account mostly only the light sources
affecting each particle. For correct back-to-front rendering, the par-
ticles have to be sorted by distance; this can be accomplished by
implementing a variant of radix sort (or perhaps bitonic merge sort
[Peter Kipfer 2005], if the former proves too slow).

The motion blur approximation isn’t very accurate: when using
actual frame times instead of fixed times, slight delays cause no-
ticeable “flashing” as particles briefly gain and quickly lose bright-
ness when stretched more. Correcting this (by integrating along the
direction of motion instead of using ad hoc lengthening of parti-
cles) would also enable the use of proper motion blur from camera
movement (which is otherwise likewise affected by the “flashing”
artifact).

Textures could potentially be used to improve the look of the par-
ticles, but there could be a risk of the “flatness” being visibly dis-
tracting; perhaps 3D textures can be utilized, with the per-particle
type parameter encoding which texture(s) to look up (and blend be-
tween) among multiple textures for different particle types.

4.3 Suggested directions
The per-particle type parameter can be used to differentiate between
many types of particles; different per-particle terminal velocities,
for instance, could allow for more interesting patterns of motion in
a group of particles.

Inactive particles (those that have collided with the scene geom-
etry and now have zero velocity) simply fade out over a short length
of time in this implementation; in reality, snow (and water) should
instead accumulate. This could be simulated in real-time, possibly
by adding inactive particles to a volumetric structure representing
the accumulation (perhaps in a real-time adaptation of the mate-
rial point method described in a Disney paper [Alexey Stomakhin
2013]).

As seen in Figure 5, abstract scenes can be rendered by the sys-
tem as-is; the system can be extended to have many different colors
and properties per-particle, not necessarily constrained by or even
based on real physics, to try to produce varied fractal-like patterns.



Figure 5: Pausing the particle updates while using extreme expo-
sure and wind strength (and disabling the G-buffer geometry render
and deferred shading lights) can create interesting abstract patterns.

Figure 6: Only particles (no scene geometry) rendered, after an
extremely strong burst of wind (created by manually adjusting the
wind strength).

References
AKENINE-MÖLLER, T. 2001. Fast 3D Triangle-Box Overlap Test-

ing.

ALEXEY STOMAKHIN, CRAIG SCHROEDER, L. C. J. T. A. S.
2013. A material point method for snow simulation.

PETER KIPFER, R. W. 2005. GPUGems 2. ch. 46. Improved GPU
sorting.


