
Voronoi fracturing -
Project in High Performance Computer Graphics, EDAN35

Tom Hansson, dat13tha Daniel Cheveyo, dat13dbj

December 13, 2017

Abstract

The problem that was going to be solved in this rapport
is about shattering a shape into smaller pieces and letting
physics interact with them. This was done by using Voronoi
diagrams and using Bullet Physics API. The resulting Voronoi
cells were evenly distributed and worked as intended.

1 Introduction

The goal of this project was to make objects break into smaller
pieces or shards. To fracture an object on contact will take
a lot of effort and time to optimize. Another easier approach
was decided, by precalculating a random fracture of an object.
To see how these shards interact with physics, the library Bul-
let Physics was used with its shaders, because the focus was
to get a good fracture and shatter not actually an incredible
shading.

In this rapport the next section will have a brief theory of
what has been done and a subsection with the pseudo code
version of the used algorithm. After that screenshots are pre-
sented of how it looks and evaluate the performance. Then
at the end discuss the results and suggest improvements and
further optimizations.

2 Algorithms and methods

Like mentioned above, this section will be about how the the-
ory underneath the code works. The core of the application
is to understand Voronoi diagrams, so this will be presented
first. Later on there will be a short subsection about the li-
brary and physics engine we used, Bullet Physics, and lastly
a subsection with explained pseudo code of the fraction algo-
rithm.

2.1 Voronoi diagrams

Voronoi diagrams is also called Dirichlet tessellations. The
definition of this is, from a set of site points, s1, s2, ..., sn,
three of those site points, call them A, B and C, in either 2D
or 3D space are connected as a triangle or a so called Voronoi
cell, Vi. A, B and C are chosen so that no other site point, D,
is closer within a circumference of a circle which circumscribes
A, B and C, as illustrated in Figure 1.

Figure 1: An up close Dirichlet tessellation with site points
(black dots), and their circumference (red circle). Point D
should be outside the circumference for the triangle to be
valid.

Points in the 2D or 3D space, p1, p2, ..., pm, that form a
mesh, M , are then assigned to a cell Vi comparing with a dis-
tance function, D(sitePoint, point), which site point is the
closest. This gives a definition of a Voronoi cell, as described
in [2]:

Vi = {p|D(si, p) ≤ D(sj , p), i 6= j, p ∈M} (1)

The distance function are usually a linear function as Eu-
clidean distance, where the difference in the x- and y-
coordinates are squared, added and then square rooted.

Figure 2: A Voronoi diagram with site points (black), Voronoi
edges, results from Dirichlet tessellations (blue) and Delaunay
triangulation (red). Taken from [3]

1

2.2 Bullet physics engine

Now a set of Voronoi cells are generated and are now going to
be integrated into the Bullet physics engine. This workspace
is created by Erwin Coumans and Yunfei Bai. It is according
to their own guide, available at their website [4], a Python
module for physics simulation for robotics, games, visual ef-
fects and machine learning. It uses a build-in OpenGL GPU
visualizer, running OpenGL 3.

With this API, we have work with rigid bodies and colli-
sion shapes. Creating them for each shape we want to render
and apply physics to.

2.3 Fracture Algorithm

In this section a pseudo code version of the code implemented
is going to be presented and explained. The pseudo code for
the Voronoi fracturing is as follows and is inspired from a
post at the Bullet Physics forum [1]:
| 1. | Create a boundary box for a shape

| 2. | Generate a number of random site points

| 3. | for each site point

| 4. | clear plane equations

| 5. | sort every other site point in a list

| 6. | for each point in the sorted list

| 7. | Add plane equation between sorted...

| | ...point and site point

| 8. | check which vertices are inside the...
| | ...plane equations

| 9. | Delete the planes that are outside

| 10. | check if the shortest distance of...
| | ... the vertices is shorter than the...
| | ...normal length, then break from loop

| 11. | generate edges from these vertices

| 12. | generate faces counter-clockwise

| 13. | create rigid body and collision shape

The created boundary box at row 1 is in this case a cube.
When randomly translated points inside the cube is generated
at row 2, the cube’s rotation was also considered.

At row 4 the plane equations for a site point are reseted
to the planes of the boundary box. This was calculated with
the rotation matrix from the box in x, y, z and also with
corresponding inverse rotation.

At row 5 all other points are sorted in a list according to
distance to this current site point. This has to be sorted to
optimize the code.

At row 7 add to the plane equations for this site point to
take account to the sorted point and set this plane’s normal
length to (sortedpoint− sitepoint)/2.

At row 8 vertices, plane intersections of 3 planes, are
tested against every plane equation combination to see if they
are inside all of them at the same time, by calculating the
cross product between pairs of planes, get the intersection
and test if this possible vertex can be projected into a last
plane, using the dot product. This is certainly a brute-force
method way to do it, so this could be done in a prettier way.

At row 9 update the plane equations by deleting planes
that are outside the vertices.

At row 10 the shortest length of the vertex list is compared
with the normal vertex length, multiplied by 2. If the normal
length is greater, then the other points are considered to be
too far away to take account to. Then the sorted list loop is
broken and all other points for a site point are considered.

At row 11 edges are calculated from the vertices for the
shard mesh/vonoroi cell, using the Bullet Physic’s btConvex-
HullComputer class, that basically generates a convex hull for
the mesh by expanding over the given vertices. Vertices are
also translated relative to center of mass of the volume that
the faces generate, to get a more synchronized representation.
In the same process row 12 are computed from the extracted
edges from the convex hull.

The last step, row 13, the rigid body and the collision
shape of the mesh are set with the right, rotation, transla-
tion, scaling and density, using Bullet Physic’s btRigidBody
respectively btCollisionShape.

3 Results

Figure 3: Generated intact cube with 50 Voronoi cells.

Figure 4: Shattered version of Figure 3.

2

Michael Doggett

Above there are two images from the executed code for gen-
erating Voronoi cells and shatter them. The table below is a
performance test of how the amount of cells affects generation
time.

number of Voronoi cells Generation time [s]
10 0.007
20 0.034
50 0.237
100 0.528
200 1.468
500 4.147
1000 10.614
2000 26.429

Table 1: Showing correspondence between chosen number of
Voronoi cells and the execution time for generating them in
seconds.

4 Discussion

The result was what we expected. The generated shards are
evenly distributed as intended and the physics’ impact on the
shards are satisfying.

Like mentioned in the subsection above, when explaining
row 7. Testing vertices in this way is not optimized and could
be improved further.

Since we focused a lot on just fracturing an object into
shards, we laid very little time on making a good shader for
the application for it, to look even more stunning. With more
time, this could have been improved.

A problem we encountered is that some kind of artifact
appears when converting a shape to Voronoi cells. While the
combined cells closely represents the original shape it is not
perfect. There appear some cracks and crevices along the
shape’s surface, as can be seen in Figure 3. The flaw proba-
bly exist in the Voronoi cell generation code, but we couldn’t
actually pin-point it with the given time. Though, We found
out that by increasing the number of Voronoi cells, the cracks
became smaller.

Our implementation only fractures cuboid shapes, but ex-
panding the algorithm to handle any type of convex polygon

should only require a way of providing plane equations and
randomizing site points inside the convex hull.

References
[1] Real-time voronoi fracture and shatter for

Bullet Physics, Real-Time Physics Sim-
ulation Forum, December 2011, URL:
http://bulletphysics.org/Bullet/phpBB3/
viewtopic.php?f=17&t=7707
Taken 2017-12-09

[2] Qin Yipeng, Yu Hongchuan and Zhang Jianjun: Fast and
Memory-Efficient Voronoi Diagram Construction on Tri-
angle Meshes, Computer Graphics Forum, August 2017,
Vol.36 Issue 5, p93-104

[3] Michael S. Rosenberg and Corey Devin Anderson: Pat-
tern Analysis, Spatial Statistics and Geographic Ex-
egesis, Center for Evolutionary Functional Genomics,
School of Life Sciences, Arizona State University, URL:
http://www.passagesoftware.net/webhelp/Delaunay_
Dirichlet_Tessellation.htm
Taken 2017-12-09

[4] Erwin Coumans and Yunfei Bai: pybullet, a Python
module for physics simulation for games, robotics and
machine learning, 2017, URL: http://pybullet.org/
Taken 2017-12-09

3

	Introduction
	Algorithms and methods
	Voronoi diagrams
	Bullet physics engine
	Fracture Algorithm

	Results
	Discussion

