
Temporal Reprojection Anti-Aliasing
Christian Alexander Oliveros Labrador∗

Lund University
Sweden

Abstract
In this essay, I describe the implementation of Temporal Reprojec-
tion Anti-Aliasing (TRAA) I implemented for the EDAN35 High
Performance Computer Graphics project. It is based on the Peder-
sen TRAA article for their game, Inside [Pedersen 2016], and on
the Xu TAA article for their game, Uncharted 4 [XU 2016].

1 Introduction
The Aliasing problem that computer graphics experience comes
from not being able to sample as required by the Nyquist-Shannon
Sampling Theorem, creating ragged edges that appear in the ras-
terization process (Spatial Aliasing) and jumps between moving
objects (Temporal Aliasing), according with Doggett and Wronski
[Doggett 2017; Wronski 2014]. Many solutions have been pro-
posed and used to solve it, e. g. the Super Sampling Anti-Aliasing
(SSAA) family of solutions that work on higher frequencies than
the required at the cost of more space requirements.

The motivation of this project is to implement a solution from
the Temporal Reprojection Anti-Aliasing family, which is relatively
new and promises to solve spatial and temporal aliasing problems in
post processing [Pedersen 2016] using less memory requirements
than the SSAA family while keeping the same quality. This is done
using the variation between the current frame and past ones to refine
the output image.

2 Algorithms
Camera Jitter; Velocity Buffer; Frame History Buffer; Clipping
Color Box; Sharpen Filter; and Motion Blur are used to implement
the TRAA.

2.1 Camera Jitter
Camera Jitter is applied every frame to preserve information from
local regions of surface fragments. If the current frame is static
relative to the past ones then the system is loosing information that
could use to refine it. [Pedersen 2016; XU 2016]

Figure 1: Jittering the Projection Matrix. Image taken from [Peder-
sen 2016]

The jittering is applied as a translation to the projection matrix
using the Halton Sequence (2,3) as the translation deltas. This se-
quence is used because it is better to have an irregular pattern for
the translations [Pedersen 2016; XU 2016].

∗e-mail: christianol 01@hotmail.com

Figure 2: Values from the Halton Sequence (2,3) used

The Figure 2 is the representation of the 16 points used to jit-
ter the projection in my implementation, as proposed by Pedersen
[Pedersen 2016]. It was generated using MATLAB with the com-
mand haltonset(2) then scrambled using reverse-radix scrambling,
scramble(p, ’RR2’) and, finally, generated the 16 points used with
net(p, 16).

2.2 Velocity Buffer
The Velocity Buffer algorithm used in this implementation is the
one proposed by Chapman [Chapman 2012] which is calculated
by subtracting in NDC space the current pixel position by its last
frame position. This is possible by saving the MVP matrix of each
object in the scene.

Also, as suggested by Xu [XU 2016], the jittering is not included
as part of the motion.

2.3 Frame History Buffer
For each fragment in the current frame we look for the 3x3 neigh-
borhood and plus (+) pattern neighborhood (See Figure 3). On both
patterns we look for the minimum and maximum of colors of the
current frame, later we average them and use them in the Clipping
of History [Pedersen 2016].

Figure 3: Sampling Pattern used. Image taken from [Pedersen
2016]

On the 3x3 neighborhood we look for the velocity of the pixel
with the closest depth, this is to get better edges in motion for pixels
that are occluded [Pedersen 2016]. We use this velocity to reproject
the position of the current frame in the history [Pedersen 2016; XU
2016].

After we have the history we constrain it (See next subsection)
and we mix it with the current frame. We linearly mix both of them
using a feedback value thats calculated by the difference of lumi-
nance between colors. This feedback is clamped between values



closer to one to add some information of the current frame while
keeping the history. This mix stabilizes the image, removing the
jittering and smoothing the edges [Pedersen 2016; XU 2016]. Be-
cause history is accumulated, we get the effect that each frame
weights less the more time the history is not rejected [Pedersen
2016].

Figure 4: Temporal Reprojection Anti-Aliasing process. Image
taken from [Pedersen 2016]

2.4 Clipping Color Box
To handle color rejection when history is too distant from current
color a Clipping Color Box is used. This is a box built using the
current pixel color as the center and the minimum and maximum
color calculated in the last subsection as limits. The history color is
taken as a position and projected against the limits of the box if it
lies outside, else, it is left untouched. The use of the Clipping Color
Box is to prevent color clustering that would happen if Clamp is
applied (See Figure 5) [Pedersen 2016].

Figure 5: Color Clamping versus Color Clipping. Image taken from
[Pedersen 2016]

2.5 Sharpen Filter
Because the Reprojection process and Color Clipping create blurri-
ness, a Sharpen Filter is required. I used the one proposed by Xu
[XU 2016].

 0 −1 0
−1 5 −1
0 −1 0


Figure 6: Sharpen Filter Convolution Matrix. As used in [XU 2016]

2.6 Motion Blur
Because the nature of the History Buffer, ghosting is created by
fragments from objects that move so fast that they are not rejected
as quickly as necessary under special lighting and background con-
ditions. The proposed solution by Pedersen and Xu [Pedersen
2016; XU 2016] is to use Motion Blur to hide this artifacts.

The Motion Blur used is the one proposed by Chapman [Chap-
man 2012]. It tries to behave like a real camera by scaling the ve-
locity of each pixel by the division of the current FPS to the one
wanted, thus, simulating the shutter speed. Then it mixes the colors

of the pixels that are sampled while following the direction of the
velocity buffer vector.

3 Results

Results are shown in the next figures. All of them are renders of the
Sponza scene.

Figure 7: Bar Rendered without Anti-Aliasing

Figure 8: Bar Rendered with TRAA

Figure 9: Bar Rendered without Anti-Aliasing Zoomed



Figure 10: Bar Rendered with TRAA Zoomed

Figure 11: Sponza Render without Anti-Aliasing

Figure 12: Sponza Render with TRAA

As we can see, the TRAA smoothes the edges of the images
without a loss of quality or performance.

4 Discussion
Current advances in TRAA allows its use in real time computer
graphics without a great loss of performance while achieving good
quality rendering. But it contain artifacts that affect the quality of
the render.

4.1 Blurriness
The current implementation of TRAA generates a very aggressive
blur, needing a Sharpen Filter.

I tried the Sobel Filter to control the blend of the current frame
and the history based on where the edges where, but it created too
many jittering artifacts. Also, I tried with a 5x5 Sharpen Filter but
it changed the brightness too much.

The Sharpen Filter that was finally used in the implementation is
the one used by Xu [XU 2016], it solves the blurriness really well
but it can not eliminate some artifacts. For future implementations
I propose to try other Sharpen Filters, maybe one with a bigger

kernel. Also, it might be possible to use the Sobel Filter to contrast
edges.

4.2 Jittering
The current implementation of TRAA is fast to stabilize the image
and cancel the jittering. But, it still has problems handling Specular
Reflections that are close to the size of just one pixel. I propose to
solve jittering by blurring a little the Specular Texture in the De-
ferred Resolve Pass to avoid pixel size Specular Reflections.

4.3 Ghosting
Some Ghosting is created when animation is done in particular spe-
cial lighting and background conditions. This is partially corrected
with motion blur but requires more processing to completely solve
it completely. Xu proposes the use of Motion Blur and increase the
size of everything by the use of an Stencil technique [XU 2016].
This is not used for the current implementation.

Pederson implementation allows the jitter in the Velocity Buffer
calculations but it creates some unwanted blurriness [Pedersen
2016]. This could be another possible solution if the Sharpen Filter
can remove that blurriness afterwards.

5 Conclusion
In conclusion Temporal Reprojection Anti-Aliasing is a good tech-
nique to solve the Aliasing problem in real time without incurring
in heavy space or time requirements. Further research is needed
to improve the image quality and reduce the ghosting, jittering and
blurriness artifacts.

References
CHAPMAN, J., 2012. Per-Object Motion Blur. http:
//john-chapman-graphics.blogspot.se/2013/
01/per-object-motion-blur.html, September.
Accessed: 2017-11-30.

DOGGETT, M. 2017. Anti-aliasing. EDAN35 High Performance
Computer Graphics (November).

PEDERSEN, L. J. F. 2016. Temporal Reprojection Anti-Aliasing
in INSIDE. GDC Vault. Accessed: 2017-11-28.

WRONSKI, B., 2014. OpenGL GLSL - Sobel Edge Detection
Filter. https://bartwronski.com/2014/03/15/
temporal-supersampling-and-antialiasing/,
March. Accessed: 2017-12-01.

XU, K. 2016. Temporal Antialiasing In Uncharted 4. SIGGRAPH
2016.


