Ray tracing with Compute Shader

Philip Pedersen*

Tobias Elinder!

Lund University
Sweden

Abstract

For the project a real-time ray tracer was implemented, we wanted
a scene with multiple physics-driven spheres and other objects in
order to capitalize on the fact that it’s rendered in real-time. We be-
gan simple and added concepts and complexity over time, resulting
in a balanced and in our humble opinion good looking ray tracer.

1 Introduction

The scope of the project was to create a real-time ray tracer demo in
OpenGL with simple physics on the rendered objects. Ray tracing
is a method to generate realistic looking images by shooting “rays”,
representing light, through pixels in an image plane. The pixel then
get the color of the object which are hit by the ray. The result is
physically more accurate than rasterization, and allows for accurate
real-time reflections, as opposed to cube mapping, but with a higher
computational cost. We use OpenGL Compute Shader to render
our scene to a single texture, each thread handling one pixel at a
time. This allows us to render it to a full screen quad in OpenGL.
Compute Shader allows parallel computations of rays and was used
to speed up the process by allowing us to render the scene on the
GPU. The scene used in the demo consists of spheres and boxes
of different materials and sizes. Simple physics such as velocity,
friction and collision are applied to the objects, which positions are
calculated in real-time.

2 3D Graphics Project

The project is written in GLSL and C++ using the OpenGL APIL.
The classes handling the physics and the window is written in C++.
The ray tracing is done in the Compute Shader to allow us to do the
computations on the GPU. A Compute Shader is a general shader
without well-defined inputs and outputs and are used for arbitrary
computations. The code in the Compute Shader is written in GLSL,
OpenGL Shading Language.

2.1 Scene and objects

The scene contains 6 planes which are defined by a point and the
normal which is sufficient to calculate if a ray will hit the plane.
A reflectivity index and a color of the plane is used to describe the
material of the plane. The roofs and the floors color is computed
with simple procedural generation. There’s two types of objects in
the scene, spheres and boxes. Spheres are defined by a centre point,
the length of the radius and the material of the sphere as the color, a
diffuse value, a reflectivity value and refractive index. The box are
defined by two end points, a color and a reflectivity value.

We use a pinhole camera, sitting in a fixed spot looking straight
at the scene. The camera consists of a point and an image plane.

2.2 Physics

Our scene has two main components that are almost totally sepa-
rated, the ray-traced rendering, and the physics of the objects in the
scene. The physics are all calculated in C++. We give each sphere a
velocity vector which is recalculated each frame, when it can poten-

*e-mail: datl2ppe@student.lu.se
Te-mail: dat]12tel @student.lu.se

tially collide with other objects. The planes and the box are static in
the sense that they have no velocity vector and are unable to move.

2.3 Ray tracing

The ray tracing method works by tracing a ray from the camera
position through a image plane as is illustrated in figl. and test for
intersections. If the ray hit an object the ray is split into two rays,
a reflected and a refracted. The ray is reflected around the normal
for specular materials and is split for glossy materials, this as well
as the refraction is illustrated in fig.3. At the intersections a ray
towards the light is traced to decide if the impact point is shadowed.

Image

Camera
position

Light
source

Figure 1: Tracing rays from the camera

In order to allow us to render our image in real-time without
visual artifacts, we decided early on a backward ray tracer. This
means that we (not entirely correctly) trace the rays backwards
from our camera back into the scene which guarantees a value for
each pixel without noise but doesn’t give as accurate results as a
converged forward ray tracing, which fires the rays from the light
source and recognizes rays that eventually ends up in the camera.

Our ray tracer follows the basic, premise of a Whitted[Whitted
1980] ray tracer (shadow, reflection, refraction). With one signifi-
cant limitation. Since GLSL does not currently support recursion,
we have to somehow modify our functions. Luckily non-branching
recursion can easily be interchanged with a while loop as described
by [Lawlor 2012]. This solves our problem as long as we don’t
have to split/branch the ray, unfortunately we need to do that in or-
der to render a simultaneously refractive and reflective material, for
example glass. As a crude compromise, we have created an addi-
tional, almost identical function to our first (the one containing the
while-loop), in order to allow a ray to split once, making it possi-
ble to render our glass material correctly on the first bounce that
touches the material, in succeeding bounces, we only either refract
or reflect, depending on which factor is strongest for the specific
material. This is obviously not correct, but it’s almost impossible to
notice the small error that occurs.

In order to render more noisy surfaces we allow rays to bounce
irregularly from glossy surfaces, this means that we add a pseudo-
random offset to the reflected/refracted ray. When only reflecting a
single ray the surface looks very noisy and “grainy” so we decided
to use the same method as described above, allowing the rays to
split one time, by firing multiple rays from the surface of a glossy
material and take the average of the result. This works well as long
as the number of rays fired is large, and we noticed that if we fired
30 rays from the surface it looked perfect, but this number was not

feasible performance-wise, so in the end we settled with 5 rays,
which unfortunately leaves some visible noise if you look close
enough. For performance reasons, we have limited ourselves to
specular and glossy materials, there are no diffuse materials in our
scene, since it needs too many rays in order to look accurate.

Diffuse (D) Glossy (G) Specular (S)

Reflction rs% |\%| |\/ |

Transmission & \

Figure 2: Source: https://elementalray.files.wordpress.com/2013/01/dgs.png

3 Result

Figure 3: Two highly reflective surfaces

Figure 4: A refractive Surface

4 Discussion

Over the last three weeks we have experimented with many differ-
ent aspects of ray tracing, our goal, to render the scene in real-time
on the GPU made a lot of the resources online hard to use, since
they were heavily intertwined with the concept of recursion. In the
end we were able to achieve far better performance than we had

Figure 5: A noisy (glossy) surface

Figure 6: Every plane given maximum possible reflection, with
maximum ray bounce depth at 15

hoped for, with a demo containing several objects that runs very
smoothly (>100fps) on modern hardware (we used a Nvidia GTX
1070).

Our biggest hurdle was the lack of recursion in GLSL, which
made the shader code messier, but in the end probably didn’t have
a great effect on the final rendering, and forced us to think about
performance and the exact number of rays fired all the time.

It seems obvious that a backwards ray tracer is the only feasible
way to make it run in real-time, at least for now, and because of
that we were not able to use forward ray tracing / photon mapping,
which would certainly have been interesting.

Optimizations are mainly limited to better ways of tracing the
geometry in the scene, with more effective methods that may exist,
and avoiding testing every ray against every piece of geometry in
the scene as we do now. Obviously it’s possible to lower the number
of rays fired from the glossy surface, but not without significant
visual degradation.

Compared to rasterization we get some very realistic looking ma-
terials and the reflections are better then using cube mapping. If a
lot of objects and more complex objects or materials was to be used
it might not have been good enough performance wise to render
in real-time. In cases where complex scenes are to be rendered in
real-time, rasterization would be to prefer with its rendering speed,
for offline rendering ray tracing is a relevant method since its lack
of speed won’t be such a big disadvantage.

Figure 7: maximum ray bounce depth limited to 2

References

LAWLOR, D. 2012. Recursive raytracing, on gpu hardware without
recursion.

WHITTED, T. 1980.

