
Rendering noise-generated terrain with ray marching
Niklas Jonsson∗ Johan Ju†

Lund University
Sweden

Abstract

Noise is commonly used in the field of computer graphics and can
be used for procedural generation among other things. This report
will detail a project for terrain generation using simplex noise. It
is rendered using raymarching which, given ever more powerful
graphic processing units, becomes more and more of a useful tool
in rendering.

1 Introduction

Noise is commonly used in the field of computer graphics and can
be used for procedural generation among other things. This report
will detail a project for terrain generation using simplex noise. It
is rendered using real time raytracing in the form of ray marching
which, given ever more powerful graphic processing units, becomes
more and more of a useful tool in rendering.

The project features real time shadows using ray marching, realis-
tic animated water with refractions and reflections corresponding to
the surrounding environment. The OpenGL API is used to accom-
plish this, using a so called fragment shader, in which most of the
computations are done. A framework called bonobo 1 is used as
well, namely for handling texture creation from images, user input
from mouse and keyboard and providing a GUI in the application.

Terrain generation using noise is interesting because it can create
realistic visual effects without needing art assets. Ray marching
enables small and compact code, avoiding creating large amounts of
geometry in application code and passing it to the shader. The trade-
off is of course performance, where ray marching cannot compete
with regular rasterization.

2 Ray marching

Raymarching is done by setting a camera position and then casting
rays from the camera position through each pixel on the screen that
should be colored. In the case of this project, this is done by ren-
dering a quad that covers the entire viewport in the regular OpenGL
pipeline and then drawing using the fragment shader, essentially the
scene is drawn upon the quad.

The actual raymarching is implemented as stepping a fixed amount
along a line in the direction of the ray until it intersects the object
that is being raymarched, e.g. a sphere or terrain. The color of
the origin pixel is determined from whatever the ray intersects, e.g.
the color of the sphere, sky or terrain. Raymarching, together with
some optimisations such as increasing step size as the distance from
the camera increases, is described in [Quilez 2002].

2.1 Distance estimation

Instead of doing constant or linearly increasing step, distance es-
timation can be used. A distance estimation function is a function
that, for any point, can give us a lower bound on the distance the ray

∗dat11njo@student.lu.se
†elt12jju@student.lu.se
1https:/github.com/LUGGPublic/CG Labs

needs to travel in order to intersect with what is being ray-traced,
e.g. noise based terrain or a sphere. For a sphere is trivial, the dis-
tance d(p) from a point p to the edge of a sphere, centered in p with
a radius r, is:

d(p) = |p− c| − r (1)

Since the terrain is modeled as a weighted sum of simplex noise
as described in section 3, estimating the distance becomes more
difficult. Assume the object that is being rendered is horizontal
plane. with height y, then the distance to it is:

d(p) = |p.y − y| (2)

The simplex based terrain can be thought of as perturbations to a
horizontal plane so the above equation can be used together with a
fudge factor f (that has to be adapted to different scenes and con-
tents) to get:

d(p) = f ∗ |p.y − y|, 0 < f ≤ 1 (3)

which can be be used to increase the step size while maintaining
visual quality. It can be improved by backtracking the last step and
then performing constant step raymarching in order to increase the
accuracy of the intersection.

2.2 Implemented optimizations

The terrain have a maximal height that can be used to optimize the
ray-marching. One optimization that is used is to remove all rays
when the camera is over the maximum height and the ray direction
have a positive y component. This scenario occurs when looking at
the horizon with the upper part of the screen showing the sky.

Another optimization is that when the camera is above the max
height, the ray can step from the camera position directly to the
maximum allowed height of the terrain (as there cannot be terrain
over that height) and start to march from there. These optimizations
removes around half of the rays in the common scenarios.

3 Terrain Generation

The terrain is generated using a weighted average of simplex noise
octaves. Simplex noise was originally devised by Ken Perlin [Perlin
2002] as an improvement to his famous Perlin noise [Perlin 1985].
Stefan Gustavson has created a introduction to Simplex noise and
how it is used that is easy to understand [Gustavson 2005].

Most of the noise generation is done in the fragment shader, only a
permutation matrix is created in the application and fed to the frag-
ment shader as a texture in order to ease the computational load.
The reason for this that the noise is calculated for each ray step.
How ray marching is done is further described in section 2 but suf-
fice to say that the noise function is executed a considerable amount
of times. We noticed the effects of this when optimizing noise cal-
culations, but more on this in section 7.

The terrain height generation formula is on the form:

h(x, z) =

∑
i

1

fi
noise(x ∗ fi, z ∗ fi)∑

i

1

fi

(4)

Where fi is the i:th frequency we which is include, and each fi
is increasingly larger. Usually frequencies are chosen from the set
{1, 2, 4, 8, 16 . . . }, e.g. 2k, where k is an integer. This summa-
tion of different frequencies is sometimes called different octaves
of noise. The lowest frequency gives the largest effects since it
has the largest factor, and creates the mountains and valleys type of
appearance. Each subsequent frequency adds finer detail but with
a lower impact, adding realistic variation on the mountain faces
[Quilez 2002][Patel 2016].

3.1 Terrain coloring

For terrain coloring, a simple rock texture was used as a base for the
mountain appearance. At high elevations, is is gradually blended
into a bright white color as to create the appearance of snowy peaks,
which can be seen in fig. 1 in section 7. Close to water level, the
rock texture was blended with a sand-like color to create the ap-
pearance of a beach or sand at the base of the mountain, close to
the water. This sand color was also used under the water to make
it lighter in color and more true to reality, as can be seen in the
appendix fig. 2.

4 Shadows and lightning

Shadows are calculated by casting a secular ray from the intersec-
tion point of the primary ray towards the light source. This is a
naive implementation that is costly but works well in this limited
project. If it intersects something on the path to the light source,
the origin is given a darker shade of the same color. The shading of
the terrain is a regular phong diffuse shading, where the normal is
calculated by taking the cross product of the numerical tangent and
binormal.

The light source is visualised by a globe of light, situated some
distance above the ground. Assume the vector between the light
source position and camera position is called v. For each pixel,
a ray, u, with the same length as v is sent into the scene. If the
distance between the end point of u and the light source is small we
draw the light source by coloring those pixels.

5 Water rendering

Water in the world is modeled by having a global water level which
means that everything under that height is under water. In the ray
casting function there are a condition that stops the ray at the water
level.

From the water surface a reflection and a refraction ray is casted.
The reflection ray is just a regular ray that can reflect the terrain or
the light source. The refraction rays direction is approximated by
subtracting the normalized incoming ray with the normalized nor-
mal of the water. The color of the water is calculated by subtracting
light from the rays depending on the dept. This makes shallow wa-
ter transparent and deep waters dark.

There are also a bump map of small waves on the water to create a
more realistic appearance.

6 Results

Some screenshots can be fund in 7 and the average render time is
110 ms on a GTX 1080, with a resolution of 800x800 pixels.

7 Discussion

Unfortunately it was not possible to use the distance estimation op-
timisation without creating unwanted artefacts in water appearance
and effects. It might have been possible with more time but it could
have been the nature of the water rendering techniques used that
made this content unsuitable for this optimisation.

A drawback of the distance estimation optimization is that it is
mostly usable when the camera position is above the point that is
going to be rendered. If the camera is very close to the ground (i.e.
y = 0) and is looking upwards toward a mountain, then each step
distance will be very small. (since it is a function of the height
above ground). The same applies to reflection rays which is used
for water reflection, which is described in section 2. A reflection
ray start at the water surface and travels until it intersects terrain (or
not and travels into the sky), and the water is colored appropriately,
thus the height above water will be very small in the beginning.

Another optimization that was attempted was creating the noise in
the application (using the CPU) and writing it to a texture which
was then sampled in the fragment shader. Since the noise function
is the same for each fragment shader invocation, it makes sense to
compute it only once and then use it for each invocation. This op-
timization was not usable however, as it introduced unwanted arte-
facts in the surface of the landscape. Filtering with several samples
was tried as well but was not enough to alleviate the issues and in
the end the partial optimization of creating the perturbation texture
in the application code was used.

Pre-generated noise textures could be extended to even create a
noise image outside the program and load it as an image and then
make texture out of it, but it would probably introduce the same
artifacts. Whether these artefacts where inherent to the optimiza-
tion technique, i.e. inherent in texture sampling, or whether there
is a bug in the noise generation code or something else entirely is
not clear. It could possibly have been usable with more work but
because of prioritizing other features, it was decided not to pursue
this optimization. Possibly, the whole height map (sum of simplex
noise octaves) could have been created beforehand and sampled in
the shader, whether or not this was possible was not evaluated.

There are a obviously a myriad of other features that could have
been implemented. Some that might have been implemented are:

• More terrain types, e.g. ray tracing trees or grass in valleys

• Clouds which can also be made using noise

• Soft shadows, possibly without casting several shadow rays

• Other types of terrains such as plains, savannas or forests

Overall a very fun project that enables students to be more creative
than in most other school projects.

References

GUSTAVSON, S. 2005. Simplex noise demystified. May.

PATEL, A. 2016. Making maps with noise functions. Sep.

PERLIN, K. 1985. An image synthesizer. SIGGRAPH Comput.
Graph. 19, 3 (July), 287–296.

PERLIN, K. 2002. Improving noise. ACM Trans. Graph. 21, 3
(July), 681–682.

QUILEZ, I. 2002. Terrain raymarching.

A Screenshots

Figure 1: Single mountain

Figure 2: Mountain view

