
SSAO and Paint Mapping, an EDAN35 project 
 

Mattias Gustafsson1 Markus Olsson2 

Lund University 

Sweden 

 
Abstract 
 
In this paper we discuss the implementation of two 

effects; screen space ambient occlusion and screen space 

paint mapping. We will see that the effects can look great 

but note that there are limitations to both. The ambient 

occlusion effect is based on a common version while the 

paint effect was implemented without preexisting 

guidelines. 

 

1   Introduction 
 
For the project two different screen space effects were 

created; ambient occlusion (SSAO) and a custom effect 

we will refer to as paint mapping (or SSPM). We 

intended to first make the SSAO effect and draw it 

without any textures to highlight the shadows created 

from the effect, then add colored paint splats on the white 

surfaces. 

 

In the following sections we will discuss the algorithms 

used for each effect, the results as well as the problems 

we ran into and the solutions we found. 

 

2   Algorithms and applications 
 
Below is an explanation of how each effect was created. 

More detail as to why some choices were made will be 

given in section 4. 

 

2.1   Screen space ambient occlusion 
 

SSAO is a commonly used effect in real-time graphics. It 

was first implemented by Crytek for the game Crysis. 

Several versions exist today3.  

 

It works by saving all the depth values of the scene in a 

buffer. Then computing the occlusion of each pixel by 

transforming it back into world space and comparing the 

depth of the pixel with the depth of a few nearby points. 

The nearby points can be chosen in a few different ways. 

The original Crytek solution sampled points from a 

sphere around the pixel. Our solution used a hemisphere 

oriented along the normal of the surface. The sample 

points from the hemisphere are chosen randomly at 

startup and the hemisphere is then rotated randomly at 

each pixel using a noise texture. A point is occluded if the 

depth in the buffer is lower than the depth at the point and 

a range check is passed. This range check makes sure the 

difference between the depths is not too great and is there 

to prevent an object from occluding other objects too far 

                                                           
1 dat13mgu@student.lu.se 
2 dat13mol@student.lu.se 
3 We based our version on the ones explained in  

http://john-chapman-graphics.blogspot.se/2013/01/ssao-tutorial.html and 
http://learnopengl.com/#!Advanced-Lighting/SSAO. 

behind it. The occlusion of the pixel is calculated as an 

average of the occlusion of all the sample points. The 

occlusion is then blurred to reduce noise. The blur was 

created by averaging together nearby pixels in the 

occlusion buffer. 

 

2.2   Screen space paint mapping 
 

Paint mapping appears in numerous games in varying 

forms. Some allow the player to paint on surfaces (for 

example Portal 2, Splatoon), while others use it for decals 

and clutter to get more varied environments. A common 

way to create these effects is to UV-map the geometry to 

a paint map (similarly to how pre-generated lighting is 

done where a light map is used). However, for reasons 

explained in the discussion section this is not how our 

implementation worked. 

 

Because we use a screen space effect we need to store the 

paint data separately. This is done with an array of points 

and vectors as each paint shot fired by the user is 

represented by the position of the user at that time and the 

direction of the shot. The color of the paint is stored as 

well. 

   The effect is created through several render passes 

through two shaders. The first shader used calculates 

what parts of the screen are colored by a paint shot. This 

shader is run once per paint shot. The second shader then 

takes the image created by the first and applies a filter to 

create the “splat” shapes. The resulting image is 

combined with the ambient occlusion and rendered to the 

screen.  

 

2.2.a Paint Calculation 

To decide if a pixel should be colored, we transform it 

into world space coordinates and compares its distance to 

the paint shot vector is less than a paint range uniform. If 

it is in range it is colored in the paint color and the alpha 

is set to one over the distance from the vector. We also do 

a check to see if the dot product between the paint vector 

and the vector between the pixel and firing position is not 

smaller than 0. Otherwise the pixel is in the other 

direction compared to the shot and should not be affected. 

We use a custom blend mode to mix the new color with 

any existing color from previous shots without overriding 

it (normal blend for color, additive blend for alpha). 

 

2.2.b Splat Filtering 

This step was created to give the color marks a more 

paint-like appearance. The shader compares the alpha 

value of each pixel on the screen with a texel in a noise 

texture. If the alpha is above the texel intensity, the pixel 

http://john-chapman-graphics.blogspot.se/2013/01/ssao-tutorial.html
http://learnopengl.com/#!Advanced-Lighting/SSAO


is drawn at full alpha, otherwise it is discarded. The 

pixels are converted to world space coordinates before 

they are mapped. This is in order to keep the mapping 

consistent as the user moves around (which changes the 

screen). 

 

3   Results 
 
Below, we see an example of each effect. In Figure 1 in 

the appendix, the scene that is rendered is completely 

white and solely relies on SSAO for distinguishing 

objects. As can be seen, the effect gives a lot of detail to 

the scene. In Figure 2 several paint shots have been fired, 

showcasing the paint splats created with SSPM. 

 

The performance of our SSAO algorithm is good. It was 

able to maintain 60 frames per second in the Crytek 

Sponza scene. The cost of SSPM scales with the number 

of paint shots fired. When using SSAO and SSPM 60 fps 

could be maintained with up to 40 shots fired on the 

computers in Uranus and dropping slightly when going 

beyond 40. On a more powerful machine, 60 fps could be 

kept effortlessly. 

 

SSAO is a very useful effect, as seen by the number of 

games that are using it. SSPM however has a few 

problems, like paint going through walls. An alternative 

implementation to the effect is desirable if you want to 

use it in a game. With that said, the effect is useful in that 

it is very simple and requires little memory resources. 

That it exists in screen space means it can be added to 

any scene without modifying it. 

 

4  Discussion 
 
In this section we will go into more detail as to why we 

made certain choices and what we found by doing so. 

 

4.1   Screen space ambient occlusion 
 

While doing the project a few different variants of SSAO 

were tried before the final version was reached. 

 

Initially the points were sampled from a sphere and no 

randomization was used. Sampling from a sphere instead 

of a hemisphere means that convex surfaces will be 

brighter than flat surfaces. This is unrealistic because all 

surfaces are flat if looked at with enough magnification, 

so light with an angle to the surface normal that is larger 

than 90 degrees will always be occluded. Not using 

randomized sample points will cause the occlusion effect 

to look very banded as surface angles will cause more or 

less points to be occluded. 

 

In most implementation tutorials of SSAO the range 

check is implemented by taking the difference in depth 

and checking if it is greater than a constant value. This is 

not good since the depth is not scaled linearly, the same 

difference in depth means different real world distance 

depending on how close to the camera the objects are. 

This means that the range check will stop working on 

objects far away and all occlusion will disappear when 

the camera gets too close. This was fixed in our 

implementation by linearizing the depth values before 

checking the difference. 

 

We also found that if there was no bias it was easy to get 

a lot of flickering as distances in depth between some 

points could be incredibly small. On the other hand, a 

large bias value would drastically reduce the detail level 

of faraway objects, making them near invisible since we 

use SSAO as our only way to differentiate objects. As a 

result, we had to use a smaller bias than one would 

normally use if diffuse textures were also rendered. 

 

A side effect of using a noise texture for sampling points 

is the pattern that appears on the screen. To compensate 

for this, we blur the texture. Normally the blurring is 

fairly intense as the shadows don’t need to be sharp when 

textures are applied but, again, without them we found 

that we had to use less blur or the screen would look too 

smeary. 

 

4.2   Screen space paint mapping 
 

Right from the start we faced several challenges with the 

paint effect. The commonly used approach to use a paint 

map for the entire geometry was no option as we had no 

good way to map the geometry correctly. We also lacked 

means to do collision checking which prevented us from 

placing decals on the hit area (decals would also be tricky 

when geometry met as we would have to put it on several 

different objects). Our solution to this issue was to treat 

the paint as cylinders which would reach far into the 

geometry. We could see if a pixel was colored by 

checking if it was inside the cylinder or not. The 

drawback of this was that we would paint geometry 

behind objects but we could ignore that as long as we 

chose not to show it (an alternative method could be to 

create a texture for each paint shot, similar to how 

shadows were handled in assignment 2).  

 

Our paint mapping went through several iterations before 

we decided on the screen space solution. We initially 

tried to give each object its own paint texture. Because 

each object has existing UV-coordinates used for its 

diffuse texture (among others) we thought we could use 

those to draw to and from a paint texture. However, it 

turned out several points in the geometry mapped to the 

same texel which caused our paint marks to cover large 

areas they should not. For example, the walls repeat their 

texture over and over but is just one object, the same goes 

for the archways which again are just a single object with 

a lot of geometry. 

 

This left us with two choices: to create our own geometry 

or try a different approach. We tried both but in the end 

we settled on the screen space effect as it would let us 

keep the Sponza scene. The new effect turned out to be 

fairly straightforward and simple to implement, though 

not without issues.  

 

The biggest issue with our screen space paint mapping is 

that we need to run the paint shader once per paint shot 

per frame. This severely limits how much paint we can 

have at once. We solved this issue by keeping only the 64 

latest paint shots, enough to paint a decent amount of 

geometry without major slowdowns.  

 

Another issue was that new paint circles would override 

old paint, with alpha enabled this would create ugly white 

circles where the paint should blend together but would 

not because we painted over the old paint with new, less 



opaque paint. The solution to this was to, as stated in the 

Algorithms section, use a blend mode to mix the values. 

 

We wanted the color to look like paint marks rather than 

circles which we did by cutting away parts of the color 

with a noise texture. This turned out to work really well 

but there was one problem: we couldn’t just map a pixel 

on the screen directly to a texel in the noise texture or the 

paint would animate when the user moved as the values 

of the pixels changed. We fixed this by taking the world 

position of the pixels, getting points which wouldn’t 

move with the camera. 

 

5   Conclusion 
 
SSAO exists in many forms and is widely used in games. 

It is an effect you often don’t realize unless you get to 

compare the difference in the scene. Our version is 

perhaps one of the more common implementations that 

handles most cases well. Sadly, the inherent drawback of 

screen space processing, that there is only so much 

information about the environment available, limits what 

we can do in certain cases where the shadow caster is 

hidden behind other geometry.  

 

The SSPM effect looks great but the limited paint count 

and lack of collision checks makes it a poor choice in 

situations where the environment cannot be designed to 

hide these flaws. On the other hand, the effect can easily 

be added to any scene without modifying it which makes 

it a good tool for testing the effect. This could be useful if 

a developer is considering to add dynamic paint and 

wants a quick example of how it could look.  

  



Appendix: 

 

 
Figure 1: The Sponza scene with only SSAO. 

 

 
Figure 2: Detailed paint splats can be achieved with seamlessly blended colors. 

 


