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Abstract
In this paper, we describe a project for the course EDAN35 - High
Performance Computer Graphics, given in the fall of 2016 at Lund
University. We combine a simulation of the physical behaviour
of a piece of fabric, both with respect to itself and with respect
to other objects in the environment, with methods to enhance its
graphical appearance. The physics simulation is parallelized and
implemented in OpenCL. The fabric is rendered using OpenGL,
and hardware tesselation and procedurally generated textures are
deployed to achieve a realistic look.

1 Introduction
This report concerns a project in the course EDAN35 - High Perfor-
mance Computer Graphics, given in the fall of 2016 at Lund Uni-
versity. Our project addresses several issues that arise in connection
with simulating fabric, both from a physical and a graphical point
of view. A realistic simulation of fabric is of interest when it comes
to rendering cloth, curtains, or other planar, non-rigid materials in
computer generated environments like games. Physically plausible
behaviour of the material and physically plausible interaction with
the environment add great levels of realism here. Note that the focus
of this paper is a plausible visualization of the underlying physical
process, as of interest in computer graphics, rather than an accurate
simulation of the physical process itself. The general framework
and some solution techniques can also be used as a starting point
towards a more physics focused approach, but as for now, the meth-
ods deployed here aim at a feasible real-time simulation of fabric.
This means there is a trade-off between both accurate physics and
photo-realistic fabric on the one hand while on the other hand, the
time constraints have to be met. Physical exactness is dropped in
favor of computational feasability. By parallelizing the entire simu-
lation, we address this trade-off. The goal of parallelism is fully us-
ing available computational resources, which speeds things up and
allows for a low-scale simulation of the fabric. We are also able
to populate the scene with additional objects the fabric can interact
with.

2 Algorithms
2.1 Physics Simulation
We model the piece of fabric as an n1 × n2 equidistant grid of par-
ticles. All particles have the same mass m and the same radius r, in
a way that along each dimension of the grid, neighbouring particles
touch each other. The distance constraint between neighbouring
particles is modelled by a spring of length 2r that is spanned be-
tween them. Consider Figure 1 for an example.

In the following we explain the structure of the physics simu-
lation and its basic ideas. Alone, they don’t make the simulation
work well yet — further details are explained later in Section 4.1.
The physics simulation is based on two primary parts. First, the
particles move according to Newton’s law of motion, i. e. each par-
ticle’s movement is described by the ordinary differential equation

F = mẍ. (1)
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Figure 1: 2 × 2 fabric with two violated constraints. Spring con-
nections dashed.

The force F is computed as the gravitational force on the particle
plus all forces caused by springs that directly connect to that par-
ticle. Starting from there, the update rules over one timestep of
length ∆t for the numerical integration of (1) are

ẋnew = ẋold + ∆t · F/m,

xnew = xold + ∆t · ẋnew.
(2)

This integration scheme is known as the semi-implicit Euler
method.1 To summarize, this approach is closely inspired by the
laws of mechanics together with an established scheme of numer-
ical integration, so we have good reason to expect results with a
certain level of quality and believability.

Second, we test for collisions, both between pairs of particles and
between particles and fixed parts of the environment. We check for
particle-particle collisions by comparing the distance between two
particle centers to 2r. In the case of a collision, the component of
the particles’ speed along the line connecting them is averaged so
that the speed difference in collision direction is zero, and the posi-
tion of both particles is corrected along the line connecting them so
that they no longer collide. Let x1 and x2 be the positions of two
colliding particles. Let

∆v = ẋ1 − ẋ2,

∆x = x1 − x2.
(3)

1https://en.wikipedia.org/wiki/Semi-implicit_
Euler_method



The update is then given by

ẋ1 ←− ẋ1 − 0.5 ·
(

∆v ◦ ∆x

|∆x|

)
· ∆x

|∆x| , (4)

ẋ2 ←− ẋ2 + 0.5 ·
(

∆v ◦ ∆x

|∆x|

)
· ∆x

|∆x| , (5)

x1 ←− x1 + 0.5 · (2r − |∆x|) · ∆x

|∆x| , (6)

x2 ←− x2 − 0.5 · (2r − |∆x|) · ∆x

|∆x| . (7)

The collision with fixed parts of the environment, e. g. the floor,
works analogously to the particle-particle collision except that such
fixed parts do not start moving due to collision. What was before
the direction connecting the particles’ centers becomes now the nor-
mal vector of the fixed surface we collide with, and the averages in
Equations (4) to (7) that equally distribute the velocity and posi-
tion change between the two involved particles now fully affect the
single involved particle instead, so 0.5 has to be replaced by 1.

The collisions computations are structured as follows: Before
the simulation starts, we choose a fixed discretization of the sub-
set of the three-dimensional space that is relevant to the simulation.
That means, the part of space where most of our interesting physics
will happen, is subdivided into several axis-aligned cubes of smaller
size. Everything else around that finely discretized area is just con-
sidered to be the “rest”. During movement, we determine via simple
comparisons on the components of the particles’ positions the cube
that each particle ends up in after the movement step, or assign it to
the “rest” if it is not contained in any cube. We keep track of this via
a list for each of the partition’s subsets. Then, pairwise particle col-
lisions are computed on each of the subsets of the space separately.
That is, for each subset, we iterate through its list of particles. For
each particle in the list, we carry out the above pairwise collision
procedure for this particle with all other particles that follow it in
the list.

We now discuss how this simulation can be parallelized. The
particles’ forces for the next simulation step can be accumulated in
parallel. The gravity component only depends on the particle itself,
and can be computed for all particles in parallel. The computation
of the spring forces affecting a fabric particle depends on the springs
it is connected to, and in that indirectly on the distance to its neigh-
bor particles after the last step. In the end, we parallelized along the
rows and columns of the fabric grid, that is, there is one thread for
each row that accumulates the forces caused by all springs along
that row, and after all rows are done, there is analogously a thread
for each column in the fabric. An alternative approach, thinking
in terms of particles and not in terms of springs, would be setting
up one thread for each particle. That thread would accumulate the
forces for that respective particle, which would work because parti-
cle positions and can be read by multiple threads at the same time.
The numerical solver given by Equations (2) can be computed for
all particles in parallel. The particle-particle collisions are inher-
ently sequential within each subset of the space, but the computa-
tions for all subsets can be done in parallel since the subsets are
independent. The collisions with fixed objects in the scene can be
carried out for all particles in parallel.

Apart from the particles that belong to the piece of fabric, ad-
ditional unconstrained particles can be included in the simulation
easily. They are subject to the very same computations, but in the
computation of the force, there are no contributing springs.

2.2 Tessellation
Due to the high computational cost of performing physics simula-
tion on a vertex, the number of simulated vertices are preferably
kept to a minimum. However, for rendering of edges and bumps

Figure 2: Schematic of the interpolation mechanism - an interpo-
lated vertex is positioned in the middle of two vertices, and then
shifted by the sine of the angle between the normals. The normal
of the interpolated vertex is the average of the original normals.

in the fabric, a maximum amount of vertices is preferred. Our pro-
posed solution is to use the vertex attributes from the simulated
vertices to tessellate the surface.

For our algoritm, each simulated vertex v carries two attributes
of use: Their position pv and their normal nv . Tessellated vertices
v̂ are interpolated by a two step process. First, their position on the
surface is linearly interpolated from the simulated vertices. Sec-
ond, their height above the surface is determined by comparing the
simulated vertices’ normal vectors:

• If they are parallel, the tessellated vertex should be on the
surface.

• If they diverge, the tessellated vertex should be above the sur-
face.

• If they converge, the tessellated vertex should be below the
surface.

This is implemented as follows:

nv̂ =
nv1 + nv2

2
,

pv̂ =
pv1 + pv2

2
+ nv̂ · |nv1 × nv2 |.

In this implementation, one interpolated vertex per edge is used.
The method can be generalized to include more interpolation
points, using barycentric interpolation of normal vectors and dis-
placements.

2.3 Shading
The shading for the fabric is quite straightforward. As a base, it
uses a Blinn-Phong shader. A gloss is added, where the gloss is
calculated according to

gloss = max(camera position ◦ normal, 0).

In addition to this, normal and shadow mapping is used. Textures
are procedurally generated beforehand, and consist of three compo-
nents,

1. a texture of white noise,

2. a texture of sin2 functions.

3. a normal map that is the numerical derivative of 2.

The textures and light components are then blended in the fragment
shader, using experimentally determined coefficients and texture in-
dexing parameters.



Figure 3: Piece of fabric, fixed at 8 points along its edge in space,
hanging above a sphere.

Figure 4: Piece of fabric, dropped onto the sphere.

3 Results
Consider Figures 3, 4, 5 and 6 for some examples of how the fabric
interacts with its environment. In the configuration of Figure 5,
there is a lot of tension in the fabric. This causes parts of it to oscil-
late within small bounds, as can actually be seen in Figure 5 at both
the right and leftmost corner of the piece of fabric. These oscil-
lations can probably be addressed by incorporating some damping
in the computation of spring forces. In this configuration, particles
also tend to leak through the fabric. On first thought, this looks
like sufficiently fast particles “tunnel” through the spring poten-
tials from the fabric constraints, but it actually turns out that this
is specific to the structure of the collision computations, and will be
discussed in Section 4.

Figure 5: Several balls dropped onto the piece of fabric. Its four
corners are fixed in space.

Figure 6: Visualization of the underlying particle structure. The
upper two corners of the fabric are fixed in space.

Figure 7: Framerate for several numbers of free particles.

One very interesting question is: How well does the simulation
scale to larger numbers of particles? On the Intel Core i7-4510U
CPU that includes an Intel HD 4400 GPU, a 29 × 29 fabric to-
gether with 500 free particles, giving a total of 1341 particles, has
stable framerates around 20. There is quite a variance in the framer-
ate though since the expense of the collision computations depends
strongly on how densely the subsets of the partition of the space
are populated with particles. Consider Section 4 for additional dis-
cussion of this. In particular, it is not trivial to obtain a setting in
which a relation like particle count versus framerate actually con-
tains useful information on the scalability. If both the number of
free particles and the number of fabric particles change over a large
range of values, you barely obtain comparable scenarios. To sim-
plify things, we stick to a 29 × 29 fabric and vary the number of
free particles. The testing scene is the one of Figure 4, but with the
additional free particles dropped onto the fabric. Figure 7 shows a
plot of the frames per second against the number of free particles.
As of now, we do not have an explanation for the sudden and severe
drop in performance as the number of free particles is increased
from 0 to 100. Suspicion is on external factors like CPU energy
management, but we are not sure about that.

4 Discussion
4.1 Physics Simulation
In practice, the simulation algorithm from Section 2.1 needs some
small additional changes in order to yield good results. They are re-
lated to two major issues with our simulation approach which will



be discussed in all detail below. In several experiments, the fol-
lowing configuration was determined to work well. This is partly
parameter dependent, so note that we use r = 0.05, m = 0.0001,
a spring constant K = 100, 29 × 29 fabric, 500 free particles and
a 20× 20× 20 discretization of the space around the fabric with a
cube sidelength of 0.4.

• In each simulation step, each velocity decays after the numer-
ical integration and before the collision detection according
to

ẋ←− (0.999)1000·∆tẋ.

The parameters 0.999 and 1000 yield good results, and the
exponential is used to ensure that the velocity decays with a
constant speed, independently of ∆t. This can be thought of
as a unified model of effects like friction or air resistance and
helps the simulation reach equilibria.

• Each velocity component is clamped to the interval [−20, 20]
after velocity decay. This helps the numerical stability of the
simulation and avoids a blow-up of the velocities due to nu-
merical error. As we will see soon, this is actually an inherent
problem.

• It turned out that a soft collision handling between particles
yields better results. That means that the positions are not
fully corrected in a single step. Instead, 0.5 in Equations (6)
and (7) is replaced by 0.1. We attribute this to the fact that
pairwise correction of particle collisions just takes two parti-
cles into account, but correcting their positions might actually
move them straight into other particles with which they did
not collide before. A more gentle position correction enables
the algorithm to regard these secondary collisions as well.

• The simulation is subject to the constraint ∆t ≤ 0.001 s. We
will discuss this soon. For now, it means that the physics sim-
ulation in general runs several times for each frame that is
rendered.

As explained in [Witkin 2011], using springs to model constraints
between objects is a sloppy way of constraint handling. Springs
do not forbid violated constraints, they only discourage them by
imposing an energy penalty on violated constraints. First, the con-
straints are technically allowed to be violated if the violating force
is large enough and cannot be compensated by the spring. Sec-
ond, even if the spring is strong enough to correct the violation, it
might still take the particles some time to move to a configuration of
lower energy. The latter can be compensated by using high spring
constants, which in turn leaves us with a so-called stiff ordinary dif-
ferential equation. Our numerical method for solving the ordinary
differential equation is a so-called semi-implicit one. This means
that its first part, the velocity update, is explicit, whereas the sec-
ond part, the position update that uses the already updated velocity,
is implicit. Explicit solvers, and also this semi-implicit one, have
the advantage that their implementation is straightforward and does
not involve additional costly operations such as solving a nonlinear
system of equations, something which fully implicit solvers do but
we cannot afford while at the same time meeting the real-time re-
quirement of the simulation. Explicit solvers have the disadvantage
that they cannot handle stiff ordinary differential equations inde-
pendently of the stepsize — there is a threshold on ∆t above which
the solution will not be stable, and this is exactly which we observed
in our implementation.

[Witkin 2011] suggests an alternative way of constraint handling
via Lagrange multipliers. The idea is maintaining a constraint func-
tion that takes all particle positions as arguments and is zero if and
only if the particles are in a valid configuration. We can use the par-
tial derivative of this constraint function to set up a linear system of

equations for the particle forces. The solution are then force direc-
tions that do not violate constraints, and we can think of this as a
model for the force transfer between particles that are tied together
by a constraint. This approach, however, has two drawbacks. First,
it is a global method that takes all particles into account at once, so
both the partial derivative of the constraint function and the linear
system of equations that has to be solved are very large. Nonethe-
less, we actually built it and managed to handle the equation solving
part in an efficient way by using an OpenCL accelerated conjugate
gradient solver. The main problem arised with collision handling.
This setting suggests two approaches towards collissions. First,
while it is possible to incorporate the collisions into the constraint
function, it becomes so large in the course of that and so costly to
compute that we can no longer simulate in real time. Second, we
can use two interacting methods, one for movement simulation and
one for collision handling, as in Section 2.1. The key here is the
compatibility of the two methods, i. e. that one does not undo the
work of the other in a way that things get worse and worse. In this
setting, however, we did not find a collision handling scheme that
is compatible with the movement computations (the one from Sec-
tion 2.1 is not, for example), and we decided to drop the approach
from [Witkin 2011] in the end. Nonetheless, the comparison gives
us insight in some of the characteristics of our simulation method.

Second, we would like to spend some time on additional discus-
sion of the collision handling scheme. A characteristic of our ap-
proach is that it is separate from the movement computations — a
priori it is unclear if the ODE solver and the collision computations
are compatible, or if both iteration schemes actually work against
each other. The small tricks and choices described at the beginning
of this section show, however, that the rather intuitive design of the
simulation algorithm can be actually modified to yield good results.

Depending on how you implement collisions, you achieve differ-
ent degrees of parallelizability. One question is: Should you check
for the collision between two particles only with respect to their
positions from the last simulation step or should you check for col-
lision using particle positions that have already been updated due
to other collision computations in this step? The first approach can
be carried out for all particles in parallel, whereas the second ap-
proach is inherently sequential. Unfortunately, it turns out that the
second approach, i. e. taking already updated particle positions into
account for the remaining collisions, yields a significantly more sta-
ble simulation and helps the two iterative methods with working
together well. Worse, the collision detection is the most computa-
tionally expensive part of the whole simulation. Why is that? The
other steps scale linearly with respect to the number of particles or
springs, but the pairwise test for collision of each particle against
all other particles scales quadratically with the number of particles,
so there is really need for optimization. We achieve this by mov-
ing to a more local way of collision handling. Why should you
test for the collision of particles that are far away from each other?
By keeping track of subsets of the space that contain only a cer-
tain number of particles, we can reduce the computational effort
by testing pairwise collisions only between particles within a sin-
gle subset. More important, this allows for a parallelization of the
otherwise sequential algorithm since all subsets are independent of
each other. A drawback is that some collisions might not be cor-
rected at the borders of the subsets. This explains the “tunnelling”
observed in Section 3. We address it by shifting the cubes of the
discretization around from simulation step to simulation step so that
each collision is at least handled properly every second simulation
step. This does not avoid the “tunnelling” entirely, but reduces it a
lot. The most general approach towards this would be an adaptive
discretization of the space, that gets finer in areas of high particle
density, and gets coarser in areas of low particle density. This is es-
pecially of interest if the scene is large and/or highly dynamic, and
most of the physics computations are concentrated on a relatively



small subvolume.
Finally, although the physics simulation is fully parallelized, it

still turned out to be faster if the OpenCL implementation is run
on the CPU instead of the GPU. This observation is with respect to
the Intel Core i7-4510U that comes with an Intel HD 4400. There
are several possible reasons for this. One might be that in order
to achieve good GPU performance, you have to design carefully
around things like sizes of local caches or preferred workgroup
sizes to obtain a speedup, and our implementation is not yet tuned
towards that. Another might be that the GPU is already involved
in OpenGL rendering and does not have the capacity to handle
the simulation at the same time whereas CPU cores other than the
one running the application’s main thread are completely idle, and
OpenCL can bring them into action.

On the Intel CPU/GPU, memory latency is less of an issue com-
pared to other architectures with dedicated graphics cards. We can
not only modify OpenGL vertex buffers at close to zero latency di-
rectly via the cl_khr_gl_sharing extension (even if OpenCL
runs on the CPU) but also map the OpenCL buffers with close to
zero latency to C pointers to edit them manually (even if they were
part of the GPU’s memory). This is due to the fact that on the In-
tel CPU/GPU, the GPU memory is contained in the system’s main
memory. This has to be kept in mind when switching to another
architecture.

4.2 Tessellation
The proposed tessellation algorithm works well for curved edges
where the divergence of normals is small. The current implemen-
tation in the geometry shader only includes one interpolation point
per edge. By use of a tessellation shader, more points could be eas-
ily implemented, leading to a smoother appearance. This is, how-
ever, beyond the scope and time constraints of this project.

Sharp turns in the fabric are also a cause for concern. The pro-
posed interpolation algorithm always places the interpolated vertex
precisely between the simulated vertices. This will cause a symmet-
ric curve between the simulated points. This is appropriate many
times, but does not easily allow for sharp creases in the fabric. This
could be addressed by implementing a second degree interpolation.

One approach is to include more information in the simulated
vertices, including the position of adjacent simulated vertices, al-
lowing for true quadratic interpolation. Another approach is to use
the world coordinates of the simulated vertices to create a mid-
vector, and comparing the two normals individually to this, thus
allowing some dissymmetry in the interpolation.

The results from quadratic interpolation should model creases
better, but would require a redesign of the entire system, and in-
crease the memory footprint of the vertices. The mid-vector ap-
proach could be implemented in the geometry shader only, but the
potential of the method is speculative at best.

4.3 Shading
While the shading looks satisfactory, there are several optimizations
that could be made, both regarding use of resources and usability.
As of the time of writing, the generated textures are 1024 × 1024
RGB textures. Because of the low information content in them, this
is a huge waste - the wave texture can be stored in enough pixels to
contain a wavelength, with the normal map only a few bytes larger.
The noise texture could also be made significantly smaller, while
avoiding repetition by clever sampling.

The current configuration is quite well tuned to achieve a cer-
tain fabric look. The shader components used are suitable for,
or adaptable to, other fabrics. However, in the current state, the
shader-intrinsic parameters (e. g. texture step size, texture blending
factors, sampling directions, light blending coefficients) are quite
non-intuitive. A system for mapping these intrinsic parameters
to constructed shader-extrinsic parameters (for example glossiness,

roughness, thread size) would significantly simplify texture author-
ing.

5 Conclusion
This project is an approach towards physically based rendering of
fabric. Easy and intuitive methods produce results of a decent qual-
ity, but certainly there is space for further optimization. The several
issues and pitfalls are discussed at length in Section 4.

Several components, for example the lightweight OpenCL accel-
erated linear algebra library that comes with a conjugate gradient
solver, the OpenCL related classes or the OpenGL related classes,
might turn out to be useful in other projects as well.
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