Grass project report

Ewen Randriamanohisoa*

Lund University
Sweden

Abstract

The goal of this project was to make grass the center of studies. It
is usually just part of the scenery and therefore made just realistic
enough to have the user not complain about it while focused on
something else, but here, the focus was put on grass.

1 Introduction

This project tried to create grass that is realistic thanks to grass at-
tributes. Lighting, post-processing and things of the same kind were
not implemented in that project because they are generic methods
to make anything look realistic. What this project aims to do is
recreate the behaviour of grass using few lines of codes in shaders
but still relying a lot on shaders in order to potentially be able to
implement realistic grass in a project where it isn’t the focus but
still isn’t left behind.

2 Algorithms or Application

The first thing we need to start working is some geometry. Grass
strands have a pointy tip so the first thing one can think about as a
model is a triangle. It turned out it was not realistic enough. What
is needed is a function that stays globally the same for a certain
amount of time before finishing in sharp tip. Seems like an expo-
nential function was the best choice, after changing some parame-
ters. See Figure 1.

Figure 1: Curve y = (1 — e ") w2 41

But once we get that shape, we need it not to stay vertical and
stiff. It needs to fall like a grass strand would. To do this, we simply
fire a particle with a certain initial velocity and under a certain grav-
ity, and we put the previous shape on the path of that particle. The
equation of that path is just that of a parabola. Only the parameters
for it are to be tuned.

Since we plan on adding wind and we want performance, we ac-
tually code this part in the shader. The geometry we created earlier
is only composed of vertex stashes, as if the strand had a length of
zero. Then the shader expands that length by putting the vertices on
the path of the particle.

However, if we always use a “vertical” gravity, it makes grass
always fall towards the same direction when on a slope (towards the
downhill direction). But we want something more as in Figure 2,
where the strand can also fall towards the uphill direction. For this
reason, gravity is an attribute that is different for each strand and
follows the normal to the terrain (or rather its opposite).

*e-mail: ewen.randriamanohisoa@ensimag.grenoble-inp.fr

X /

Figure 2: Grass on a slope can fall towards the uphill direction

Then, we need to add wind. The main program manages a wind
vector that randomly but still smoothly changes its direction, and
a wind force that changes the same way. This wind vector is then
passed to the vertex shader, multiplied with a sine to add oscillation
and simply added to the forces that affect the particle the strand
follows.

But if we do this, it will actually just stretch the strand towards
the direction of the wind. All parts of the strand will still face the
direction its root is facing even though its tip will be moved. We
need the strand to actually turn towards the direction of the wind.
For this, we use derivatives of the path of the particle to compute
a moving base and we place the vertices according to this base.
Now, the whole strand turns towards the wind, which isn’t what we
wanted either, its root shouldn’t move. Using simple linear inter-
polation between the two methods, we can have a root that always
faces the same direction, a tip that turns towards the wind, and a
coherent shape in between.

Shaders also use simple functions often based on sinus to give
colors to objects. The cubemap mixes yellow and pink using sines
in a pattern which repetition doesn’t strike too much and grass
strands have lines on them when zoomed in. These last lines are
however faded out when the camera is farther away in order to avoid
artifacts. The same kind of combination of sines is also used to
shape the terrain, giving it an almost random feel but still forcing
the creation of a crease in order to check the behaviour of strands
in slopes.

3 Results

Code-wise, the result is just a few lines, and only simple ones. But
even though it seems trivial when reading it, it wasa lot of trial and
error and rewrite before getting to this stage of coherent code that
produces this realistic behaviour. But due to its simpleness, it also
gets honorable performance as shown on the FPS counter on previ-
ous screenshots. Performance can obviously be tweaked by chang-
ing parameters here and there, such as attributing less triangles to
grass strands.



Here are some screenshots showing what grass and its environ-
ment look like.

Figure 3: Grass behaves well on slopes

Figure 4: Lines on near strands, not on distant ones, and light arti-
facts inbetween

Figure 5: Wind affects tips but not roots

Fur was also implemented, as a variation of grass since they
share most of their properties, as shown on Figure 6.

4 Discussion

Perlin noise was attempted for the ground under the grass but it
doesn’t seem to work well. It seems like vertices only have two
colors and only the interpolation from the shader gives a somewhat
smooth look. But the noise was supposed to be smoother itself.
Since that was only under the grass and not very visible, nothing
was attempted to try and fix it.

Something else that didn’t see a lot of effort to improve was ge-
ometry generation. It was only written in order to be easily modifi-
able to add features or change its behaviour (such as the moment

Figure 6: A furry ball using grass code

when it was decided geometry would be stashes and not direct
strands). Which means it could probably use some optimization,
both speed-wise and space-wise. But size doesn’t often matter in
a project, especially in one without any kind of images, and speed
isn’t so important when generating geometry, it’s only a one time
step at the beginning. If speed was really needed at that point, it
would probably be a good idea to store pre-computed data and never
have to generate grass again at launch.

Since generating fur and grass is so similar, they could also share
their code, but really share functions instead of using duplicated
code with very few lines changed. Code was duplicated when grass
was working and fur was to be added, in order to implement fur
without breaking grass. But now that they both work, it would be a
much cleaner piece of code if it were a single function with different
parameters for example.

And of course, things that can be implemented to increase gen-
eral realism are generic methods like lighting and shadows, but as
written in the introduction, that was not the purpose of this project.



