
EDAN35 Real-time hatching
Elliot Jalgard∗ David Abramian †

Lund University
Sweden

Abstract
This paper is about a project done in the course EDAN35 (High Per-
formance Computer Graphics). Mainly through the use of shaders
and employing hatching techniques, we have achieved a real-time
hand drawn effect in a 3D environment, applied on objects created
for an entirely different purpose.

1 Introduction
The aim of this project is twofold: on one hand we implemented an
edge detection algorithm, while on the other we have implemented
a hatching algorithm. Both of these algorithms combine to create
an overall hand-drawn effect on a scene.

Edge detection algorithms employ a series of techniques to de-
tect the discontinuities in a picture. In our case we applied these
techniques to the depth and normal buffers, and used them to be
able to draw the edges of objects.

According Praun, E. et al: ”Hatching generally refers to groups
of strokes with spatially-coherent direction and quality. The local
density of strokes controls tone for shading. Their character and
aggregate arrangement suggests surface texture. Lastly, their direc-
tion on a surface often follows principal curvatures or other natu-
ral parametrization, thereby revealing bulk or form.” [Emil Praun
2001]

In this project we have successfully implemented a hatching al-
gorithm using as base the Bonobo framework provided for us.

2 Algorithms and Application
2.1 Edge detection
The chosen implementation of edge detection was based on a basic
image processing technique of two-dimensional convolution of the
image with a specific kernel matrix K. By choosing different kernels
we can achieve different effects, such as blurring, sharpening of
edges, edge detection, etc. For edge detection, there are a variety
of kernels available, which provide different results. Our chosen
kernel was the following one:

K =

(
−1 −1 −1
−1 8 −1
−1 −1 −1

)
It is important to note that the total sum of the matrix values is 0.

By examining the behavior of this kernel when executing a convo-
lution with an image we can see that for uniformly colored surfaces
the output is 0, while when an edge is encountered it gives either
a very positive or very negative output, depending on whether the
edge is ascending or descending. In a sense, this convolution can
be viewed as an approximation of the two-dimensional derivative
of the image, which in turn produces the edges. By taking the abso-
lute value of the result of the convolution we get a new image with
the edges marked in white.

We applied this edge detection technique both on the normal
buffer and on the depth buffer, thus obtaining two mostly com-
plementary results that we added together to get the overall edge

∗ada10eja@student.lu.se
†dav.abramian@gmail.com

Figure 1: Rendered with the textures mapped to the objects

image. Finally, in the last step of shading we applied a black color
to all the pixels that corresponded to values above a certain thresh-
old on the edge image, thus showing black edges on the objects of
the scene.

2.2 Hatching
In this project we followed the hatching method described in
[Emil Praun 2001]. In order to achieve hand drawn strokes we
apply them as a texture on the objects, instead of rendering them
as individual primitives. One important distinction to be made be-
tween photorealistic rendering and hatching is that in the former
the applied texture is used mainly to convey material detail, while
in the later they additionally convey shading. Thus, to get the right
effect we need to change the density of the strokes according to the
light level of the object. In order to achieve this we employ tonal
art maps, which are collections of textures that represent different
levels of shading, where every level is computed by adding more
strokes to the previous level. This allows us to interpolate between
two textures without them clashing with each other. One of the
tonal art maps we employed is illustrated in Figure 1.

In order to implement this algorithm we had to send the tex-
ture coordinates of all objects from the fill gbuffer shader to the re-
solve deferred shader. We did this through the diffuse buffer, since
we do not need the diffuse properties of the materials in order to im-
plement hatching. The lighting section of the program is unchanged
form Assignment 2. Most of the processing takes place in the re-
solve deffered shader. The first thing we do is calculate a single
value of light for each pixel. We do the following formula:

Y = 0.2126R+ 0.7152G+ 0.0722B

This formula calculates the luminance of a pixel based on its
RGB values, effectively turning a color image into a grayscale one.
The next step is the selection of the coordinates we use to map the
textures. We decided to allow for two different options: screen-
space coordinates and object texture coordinates. By applying the
former, the hatching images are fixed to the screen, but the line
density is dependent on the light levels of each pixel, while the later



Figure 2: Rendered with the textures mapped to the objects

Figure 3: Rendered with the textures mapped to the screen coordi-
nates

applies the hatching texture to each object as if it were a regular
texture.

To achieve a seamless transition in line density we set certain
threshold for the light values and linearly interpolated consecutive
pairs of hatching textures between them. As was mentioned before,
the fact that each level of the tonal art map is based on the previ-
ous one makes the result of this interpolation smooth and seamless.
The last step of the shading process checks if the current pixel cor-
responds to an edge, and if so paint it black. Otherwise it applies
the value calculated previously from the hatching textures.

2.3 Hatching textures
Besides using the hatching textures from [Emil Praun 2001], we
tried to experiment with creating our own tonal art maps. We suc-
ceeded to do so in two different ways.

The tonal art map composed of different ellipses was created
using the Paint.net program, simply by drawing successive layers of
ellipses and saving them as different textures. The main challenge
with this approach is achieving seamless textures. To do this we
employed the SeamlessHelper plugin, which divides the image into
four quadrants and switches the places of the opposed ones.

In addition, we wrote a JavaScript tool for creating our own
hatching textures. It works by creating a canvas on which we pro-
cedurally draw lines of different color and width. This time, too,
the main issue was with achieving seamlessness in the textures, but
this was eventually solved aswell.

3 Results
We succeeded in implementing both the edge detection and the
hatching algorithm. Figures 2 and 3 show a sample of the resulting
look.

4 Discussion
We found that mapping the textures to the screen coordinates makes
a nice effect from a static viewpoint. Once the camera starts moving
around the textures dont follow the objects. The effect didnt give a
hand-drawn effect. By using the objects texture coordinates, mov-
ing the camera around felt more natural. We did however encounter
a problem here, since the texture coordinates are not generic for
the spatial dimension. In order to achieve a more uniform effect
independent of the size of the object, we came up with a modulo
solution. It is not perfect, some objects have tighter textures than
others, but the overall effect is close to what we desired.

References
EMIL PRAUN, HUGUES HOPPE, M. W. A. F. 2001. Real-time

hatching. ACM SIGGRAPH.


