
Department of Computer Science,
Faculty of Engineering, LTH

Screen Space Ambient Occlusion & Colour Bleeding
Project Report in High Performance Computer Graphics, EDAN35

Christian Colliander & Elin Törnquist

December 2015

Abstract

This report describes the implementations of
Screen Space Ambient Occlusion and Colour
Bleeding intended to improve photorealism in a
graphics model of the Sponza atrium.

Algorithms as described by John Chapman in
[1] and learnopengl.com in [4] were implemented
to add Screen Space Ambient Occlusion and al-
gorithms as described by Ritschel et al. in [5]
were implemented to add Colour Bleeding. Ev-
erything was done in the Bonobo framework in
Visual Studio. All additions to the original code
provided via the home page of the course (found
at [3]) has been tagged to enable easy overview.

Introduction

In this project screen space ambient occlu-
sion (SSAO) and colour bleeding were imple-
mented and used on the scene shown in Figure 1.
SSAO lends increased photorealism to a scene by
adding proximity shadows, i.e. shadows created
when nearby geometries occlude scattered (am-
bient) light. This was done by implementing an
algorithm that approximates the amount of am-
bient light that reaches a given point in the scene,

based on nearby geometry. Colour bleeding in-
creases the photorealism of a scene by adding
colour to the shadows based on the colour of the
geometry causing the occlusion. As is made obvi-
ous by comparing the versions of the Sponza de-
tail in Figures 7-14 the SSAO and colour bleed-
ing has a subtle but noticeable impact on making
a scene look realistic.

Figure 1: The Crytek Sponza atrium scene rendered using
deferred shading in the Bonobo framework, in the second lab-
oratory exercise of the course (see the pdf at [3]).

SSAO

In this project a variant of the normal oriented
hemisphere method, described in [1, 4], has
been used for implementing SSAO. The method
is a post-processing addition to a deferred ren-

1



dering pipeline. It uses per-fragment depth in-
formation to recreate the fragment’s position in
world space and checks if there is any nearby
geometry which occludes the sample. Except
for some precalculations done on the CPU the
whole process can be performed on the GPU us-
ing data stored in frame buffers and textures,
which makes the method work in realtime and
independent of the scene’s complexity.

After the fragment-to-be-tested has been pro-
jected to world space nearby points in world
space are selected using a set of points within
a hemisphere, oriented according the fragment’s
world space normal and scaled depending on the
scale of the scene (see Figure 2). These sample
points are then projected back to screen space
and the depth values in their corresponding frag-
ments are compared to the depth of the projected
points. If the depth of a sample point’s corre-
sponding fragment, i.e. the corresponding geom-
etry, is less than the depth of the projected point,
then the sample point is behind some geometry
occluding the original fragment. The greater the
number of sample points with larger depth values
than their corresponding fragments’ depths, the
more nearby geometry occludes the original frag-
ment. The amount of occluded samples is then
finally converted into a value between 0 and 1
that can be used to scale the amount of ambient
light that reaches the tested fragment.

Figure 2: Hemisphere kernel, oriented with the fragment nor-
mal, with sample points within the hemisphere [1].

If, instead of a hemisphere, a sphere had been
used about 50% of the sample points correspond-
ing to fragments at flat surfaces would be located
inside the surface, contributing to occluding the
fragment and hence rendering the surface darker
than what would be expected. A spherical ker-

nel would also make convex corners lighter than
what would be expected as fewer sample points
would be inside the geometry. A hemispheri-
cal kernel hence creates a more photorealistic
SSAO effect as doesn’t generate any unnecessary
and unrealistic sample points behind the tested
point.

The amount of sample points for each tested
fragment can be tweaked to either increase per-
formance or quality - more sample points give
better results but requires more computation.

For performance optimization the number of
sample points needs to be low but this can lead
to banding artifacts. To combat this problem the
sample kernel is rotated at each pixel to (semi-
)randomize the position of the sample points.
This leads to less banding but instead introduces
high frequency noise which is removed through
blurring in the final pass.

To implement the SSAO algorithm the follow-
ing data is needed for each fragment[4]:

• A per-fragment position vector

• A per-fragment normal vector

• A linear depth texture

• A sample kernel

• A per-fragment random rotation vector
used to rotate the sample kernel

Figure 3 shows the implementation steps, from
sampling the G-buffer in order to attain the per-
fragment position and normal data to the light-
ing pass of the rendering.

Figure 3: Overview of the steps needed to implement the
SSAO algorithm [4].

2



Colour Bleeding

As with SSAO, colour bleeding, as per the
method described in [5], is implemented in screen
space and is hence both independent of the com-
plexity of the scene and easy to implement in
deferred rendering alongside SSAO as most of
the needed parameters are already at hand.

The method described in [5] uses the same
hemisphere and sample points that are used for
the regular SSAO. Corresponding screen-space
fragments are identified for each sample point in
the same way as for SSAO, but instead of only
looking at depth values also fragment normals
and colours are considered when modeling how
nearby surfaces affect the light reaching the orig-
inal fragment. If a sampled fragment has a nor-
mal that is oriented towards the original frag-
ment’s surface (see Figure 4) light hitting the
sampled fragment will reflect (”bleed”) onto the
other fragment, affecting its final colour. This in-
direct lighting is often very subtle but can help
make a scene more believable and realistic, es-
pecially when shiny materials, like marble, are
involved.

Figure 4: Original fragment (red) with sample points (dark
green), projected sample positions (light green) and their corre-
sponding normal vectors. The normal vectors of sample frag-
ments B and D are oriented towards the original fragment’s
surface and hence the light hitting those sample fragments will
bleed onto the original fragment.

Algorithms

The SSAO and colour bleed was implemented in
the Bonobo framework, using the program from

Assignment 2 as a basis. The same scene (i.e.
the updated Crytek Sponza) was used and the
general deferred shading pipeline was also kept,
with SSAO + screen space colour bleed added
at the end as a post-processing effect. Below
follows, in broad strokes, all the changes and ad-
ditions to the code that was necessary in order
to get SSAO and colour bleed to work. First.
two additional frame buffer objects were set up:

• The SSAOFbo buffer, to which a screen-size
texture was attached that was used for stor-
ing the colour bleed in the rgb channels and
the occlusion factor in the alpha channel.

• The allLightFbo, to which a screen-size tex-
ture was attached that was used for stor-
ing all diffuse and specular light from the
light sources in the scene. This was essen-
tially the same image that the deferredRe-
solveShader output to the screen in the final
pass in the Assignment 2 program (minus
the ambient light).

Two textures were also set up and the values
stored in their texels were precomputed in the
main program, before the main loop:

• The rtNoiseTexture, a 2D texture with 4x4
texels, for storing the noise used for rotating
the sample kernel on a per-fragment-basis.

• The rtKernelTexture, a 1D texture with the
same width, in texels, as the number of sam-
ple points in the kernel, used for storing
those sample points.

Both these textures were set to ”nearest” tex-
ture filtering; interpolation between the texels
was not desired, only the exact values in each
texel was of interest.

The noise texture’s wrapping mode was set to
”repeat” so that it could be tiled across the entire
screen. For the tiling to work correctly a noise
scale was also set up as Screenresolution

Noisetextureresolution and
stored in a 2D vector (containing the scale both
in the x- and the y-direction).

3



To be able to convert differences in depth in
the depth buffer into differences in distance in
world space, and vice versa, a depth span was
set up as (farplane − nearplane). This value
was the distance in world space that was mapped
onto the [0, 1] scale in the depth buffer.

The Kernel Texture

Each texel in the kernel texture was generated
from a 3D vector with uniform random values on
[-1, 1] in the x- and y- dimensions and uniform
random values on [0.05, 1] in the z-dimension.
The minimum value in the z-dimension was set
to avoid samples near or in the surface containing
the fragment as this could cause artifacts due to
the quantized depth buffer [2].

Normalizing this vector yielded a vector point-
ing to some point on the surface of a unit hemi-
sphere oriented along the z-axis. A quadratic
function was used to bias the placement of the
sample points towards the center of the kernel.
This biasing would have the effect of indirectly
making geometry close to the origin of the kernel
have a greater impact on occlusion, since (gen-
erally) more sample points would be there to de-
tect that geometry, compared to geometry fur-
ther away from the kernel’s origin where there
are fewer sample points. Finally, the sample vec-
tors were stored as RGB-values in the kernel tex-
ture.

The Noise Texture

Each texel in the noise texture was generated
from a 3D vector with uniform random numbers
(on [-1, 1]) as the x- and y-components (corre-
sponding to the tangent and bitangent in normal
space) and 0 as the z-component (corresponding
to the normal). This vector was then normalized
(thus mapped to the edge of the unit circle) and
finally stored as RGB-values in the noise texture.

Once all these things had been set up the main
loop was started and proceeded just as in assign-
ment 2 until all the direct light sources (i.e. dif-
fuse and specular light) had been rendered (i.e.

pass 2), after which the direct light was accumu-
lated in the buffer allLightFbo. The data in that
buffer was then used both in the SSAO and in
the resolve deferred shaders.

SSAO Pass

In addition to some uniform projection matri-
ces and constants, the following textures/buffers
were bound to the SSAO shader:

• Depth buffer

• Normal buffer

• allLightFbo

• Noise texture

• Kernel texture

Each fragment the SSAO shader runs on is pro-
jected into world space. There, a temporary tan-
gent space is set up by using the cross product
between the fragment’s world space normal and
an arbitrary vector as the tangent and the cross
product between this tangent and the known
normal as the bitangent. Note that the same
vector is used for creating the tangent in all frag-
ments, except when a fragment’s normal hap-
pens to be parallel to that vector where another
”fallback” vector is used. A TBN matrix is cre-
ated from these 3 vectors and multiplied with the
noise texture vector corresponding to the source
fragment’s position in screen space, thus creat-
ing a ”noise vector” that is a quasi-random linear
combination of the tangent and bitangent.

A new tangent space is then constructed by
using the Graham-Schmidt process on the frag-
ment’s world space normal and the noise vector.
The resulting tangent space vectors are stored in
a TBN matrix.

The end result of this is a quasi-random ro-
tation of the tangent space on a fragment-by-
fragment basis, with the same orientation being
repeated every fourth pixel on surfaces with the
same world space normal, as seen in Figure 5.

4



Figure 5: A closeup of the tangent vectors in the scene, pre-
sented as RGB values, without the blur filter. Notice that the
same tangent direction(/colour) is repeated every fourth pixel
on surfaces with the same normal.

Each vector stored in the kernel texture is
then, in turn, multiplied with the rotated TBN
matrix, thus moving the sample points into a
tangent space defined in world space coordinates
(compare this to how surface normals are per-
muted in bump mapping). The radius of the
kernel hemisphere is then scaled using a scene
dependent factor 1, and the kernel is moved to
the fragment’s position by adding the fragment’s
world space coordinates.

The result is a set of ”sample points” within
a hemisphere centered on the fragment’s world
space position, pointing along the fragment’s
surface normal.

Each sample point is then projected back into
screen space and the depth of the correspond-
ing sample fragment is extracted from the depth
buffer. This depth is then both compared to the
depth of the original fragment and the depth of
the sample point.

The first check (the ”range check”) is there to
prevent occlusion from very large depth discon-
tinuities. Without this check objects in front of
distant geometry would appear to have a black
aura (see figures about the range check in [1]). If
the sample fragment is very far from the original
fragment then AO is not applied for that sample

1The size of the hemisphere determines the distance
at which occluders will be detected. Different scenes
generally require different radii and it’s often up to the
artist/programmer to determine what value to go with
[4].

point. The acceptable depth difference between
the two fragments decreases with the square of
the depth of the original fragment - this is dis-
cussed further in the ”discussion” section.

The second check (the ”occlusion check”) tests
if the sample point’s corresponding fragment is
in front of the the sample point. If so then the
sample point is assumed to be inside geometry.

If both the occlusion check and the range check
passes then it is assumed that some geometry
is near (and in front of) the original fragment
and that that geometry is close enough to real-
istically occlude the original fragment. If both
these checks passes then that sample point is
counted as an occluder and an occlusion factor
is increased by 1.

These checks are performed for all sample
points in the kernel and the final occlusion fac-
tor is normalized to [0, 1] (i.e. divided by the
total number of sample points) and inverted, so
that many occluders result in a small factor and
few occluders result in a large factor. The occlu-
sion factor is stored in the alpha channel of the
SSAOFbo.

Calculating Colour Bleed

Using information already stored in different
buffers and reusing the sample points set up for
SSAO it’s possible to add colour bleeding as a
post processing effect. Colour bleed is calcu-
lated in the SSAO shader, after AO has been
computed.

For each sample point that contributes to oc-
clusion some extra calculations are performed,
the intent of which is to see how much, if any,
light should bounce from the (world space) oc-
cluding fragment onto the original fragment.

The amount of light that bounces is deter-
mined using Equation (1), which is a somewhat
simplified version of the second equation in [5],
where di is the distance between the original
fragment P and the occluding fragment i, Af

is a factor loosely representing the size of the oc-
cluding fragment, Θoci is the angle between the
normal of the occluding fragment and the trans-

5



mittance vector (see Figure 6) and Θori is the
angle between the normal of the original frag-
ment and the transmittance vector.

Ldir(P) =
N∑
i=1

Lpixel
AfcosΘocicosθori

d2
i

(1)

If the occluding fragment is oriented towards
the original fragment, light will, to a degree, re-
flect from it onto the original fragment. There-
fore, if the cosine factors meet the demand of
being greater than 0, colour is sampled from the
allLightFbo at the occluding fragment’s screen
space coordinates, scaled using the result of
Equation (1) and stored in the RGB-channels
of the SSAOFbo. Note this value only was the
light transmitted from the occluding fragment
to the original fragment and that the interaction
with the original fragment’s surface was calcu-
lated later, in the blur shader.

Figure 6: If the original fragment and the occluding fragment
are facing each other then light hitting the occluding fragment
will bleed onto the original fragment. Whether the two frag-
ments are facing each other is determined by comparing the
angles between the respective fragment’s normal and a trans-
mittance vector, going from one fragment to the other.

Blur Pass

The blur pass required the SSAOFbo, the all-
LightFbo and the diffuse texture buffer from pass
1, in addition to the resolution of the noise tex-
ture and the inverse of the screen resolution.
First, the direct light and diffuse colour for the
current fragment was extracted from the all-
LightFbo and the diffuse texture, respectively.
Ambient light was calculated from the diffuse
colour and a scene dependent ambient light fac-
tor. Then, the occlusion factor and incoming in-
direct light (colour bleed) was calculated for the
current fragment by sampling the SSAO buffer

in a grid with the same size as the noise texture
(4x4 by default) and averaging the result. The
final ambient light was then simply calculated by
multiplying the (averaged) occlusion factor with
the ambient light. The final indirect light was
calculated by first multiplying the incoming in-
direct light with the original fragment’s diffuse
colour (material interaction) and then applying
a filter that dampened colour bleed on surfaces
with little incoming direct light (this filter pre-
vented unrealistic highlights on dark surfaces).
The final colour of the fragment was computed
as the sum of the direct (diffuse + specular),
the ambient light and the indirect light (”colour
bleed”).

Results

By comparing Figures 7 and 8 it is noticeable
that proximity shadows as well as colour bleed-
ing has been added to the scene. The differences
between the different effects are made more ob-
vious in Figures 7-14.

Figure 7: Overview of the original scene, where deferred shad-
ing has been used to render the Sponza palace.

Figure 8: Overview of the Sponza palace scene where SSAO
and colour bleeding has been added to the deferred rendering.

6



Figure 9: Detail of the Sponza scene, with both SSAO and
colour bleeding disabled.

Figure 10: Detail of the Sponza scene, with added SSAO.

Figure 11: Detail of the Sponza scene, with added colour
bleeding.

Figure 12: Detail of the Sponza scene, with both SSAO and
colour bleeding added.

Figure 13: Detail showing the original state, with both SSAO
and colour bleed disabled.

Figure 14: Detail showing the final state, with both SSAO
and colour bleed enabled. The SSAO is most visible on the
side of the pillar to the left, and colour bleed is most obvious
on the floor bellow the tapestry.

7



Discussion

Much information about how to implement the
algorithms for both SSAO and colour bleeding
could be found online. Online guides did a good
job at outlining the general steps needed to get
SSAO up and running, as well as some tips for
how to tweak certain parameters. Even so, every
step along the way had to be manually adapted
to the code from Assignment 2, something which
provided ample opportunity to get into the code
and really understand what every line of code
did.

Finding variables (hemisphere sphere size,
occluder fragment size for colour bleed, ambient
light strength, kernel size etc.) that worked well
required a lot of trial and error. In addition to
directly tweaking variables there were lots of
other things that could be done in the code to
affect the final look of the image, like what kind
of function to use for scaling the acceptable
depth distance during the range check.

We were satisfied with the general imple-
mentation of the AO, but felt that some of the
variables and expressions (like kernel radius, the
expression for the range check radius and how
much the occlusion factor should be increased
for each occluder) could use some more tweaking
to improve the look of the AO in the scene.

As an example, no range check caused good
looking self shading but unacceptable SSAO
auras, a constant radius size caused auras for ob-
jects far away and no occlusion for objects close
to the camera, a linearly decreasing value made
had the same effect as constant values, but to a
lesser degree and a quadratic expression almost
removed the phenomenon (granted, it still wasn’t
perfect and there was certainly room left for im-
provement2).

2Shortly after handing in the project we found an even
better equation for the range check in [4]. This equation
was a smoothstep from 0 to 1 with the quotient between
the AO radius and the depth difference between the orig-
inal and sample fragments as the source value.

We were quite satisfied with the colour
bleed too but think that there was a lot of
room left for improving the effect.
For example, sometimes the bleed effect looked
a bit jagged/pixelated. Averaging the colour
bleed over a larger grid could probably help
with that, or even using a more advanced
blurring algorithm. That the colour bleed was
only calculated in image space could be seen by
looking at the pillars near the drapes: colour
bled to the parts of the pillars that were in
front of the drapes, but the parts of the pillars
that were behind the drapes received no colour
bleed (because the normal of the visible parts
of the drapes were pointing away from those
surfaces), as seen in Figure 15. In [5] the authors
used a combination of multiple cameras and
depth peeling to solve this, a similar solution
is possible for our implementation but it is
questionable whether the performance cost
(especially for multiple cameras) is worth it.
Using a smoothstep function to scale the range
check radius instead of a quadratic function
made the effect less obvious, as seen in Figure
16, so it can be said that that was a partial
solution to the problem.

Further, ambient light doesn’t cause any
colour bleed in our implementation because we
don’t add ambient light until the final pass.
This is tricky to solve because we don’t know
exactly how much ambient light will be at
any given point until we have completed the
SSAO pass. We haven’t figured out any perfect
solution, but a decent solution could be to add a
small amount of ambient light before the SSAO
pass, calculate SSAO + colour bleed and, in
the blur pass, subtract the ambient light that
was added from the allLightFbo and add new
ambient light that is scaled according to the
occlusion. This would add some colour bleed
from ambient light, but it would not properly
scale with occlusion.

8



Figure 15: A closeup of colour bleed near the drapes in the
scene, with a quadratic function used for the range check.
Colour bleed strength was scaled to make it more apparent
for the screen capture. Note the sharp cutoff of the bleed for
fragments ”behind” the drape.

Figure 16: A closeup of colour bleed near the drapes in the
scene, with a smoothstep function used for the range check.
Colour bleed strength was scaled to make it more apparent for
the screen capture. Note the smooth cutoff of the bleed for
fragments ”behind” the drape.

Performance

Performance is critical within real-time render-
ing and overhead should be kept at a minimum.
When implementing SSAO there are a lot of fac-
tors that impact performance and many tweaks
that can be done to enhance it, often without
compromising visual fidelity to any major extent.

A great example of these kind of optimizations
is the use of a pre-calculated sample kernel +
noise texture and a blur filter, as opposed to
calculating multiple random sample points for
each fragment in the SSAO shader. Sampling a
couple of times from 2 very small textures (using

only ”nearest” filtering) and blurring the result
is cheaper than generating multiple random
values and converting them to points with the
desired distribution throughout a hemisphere in
each instance of the SSAO shader. While using
completely random sample points in each frag-
ment would give a better result (e.g. absolutely
no banding artifacts given a reasonable amount
of samples), the cost associated with doing so is
too high for real-time rendering.

The variable that is the most intuitive ”quality-
vs-performance” dial is the number of sample
points in the kernel: more points give better
and more consistent detection of occluders,
but also has a negative impact on performance
since more sample points will have to be looped
through in each fragment. We found that 16
samples was a pretty good ”average” value, with
half of that (8) introducing noticeable banding
and that twice of that (32) providing noticeably
better looking results. Anything above 64
provided little, if any, improvement in visual
fidelity, making a kernel size of 64 a reasonable
upper cutoff because of the diminishing returns
thus associated with higher sample counts.

Average ms per frame (over 10 seconds) for
different numbers of sample points in the kernel
are shown in Table 1. Also shown is the average
time per frame with no AA (measured in the
program from assignment 2). The results were
measured on a laptop with an Nvidia GeForce
460M, an Intel i7-2630QM and 12 GB of RAM.

Sample points Average ms/frame % increase

No AA 53.48 0.00
8 68.03 27.21
16 68.03 27.21
32 84.03 57.12
64 149.25 179.08

Table 1: Average time per frame (in milliseconds) measured
over 10 seconds and the % increase in time needed per frame
from the lowest value for different amounts of sample points in
the kernel. Also listed is the same values for the program from
Assignment 2 (i.e. no SSAO at all).

Outside of tweaking the number of sample

9



points there are multiple other things that
can be done to increase performance, like
running the SSAO shader at half the window
resolution, which allegedly provides great
performance improvements in exchange for
a small reduction in visual fidelity, partly
because the final result is blurred [6]. This
wasn’t something that we implemented in our
project, but it would probably be the first thing
we would implement if we were to take it further.

Measuring how much more expensive SSAO
with screen space colour bleed is compared to
just SSAO would be interesting, but it would
require rewriting a lot of code (mainly cutting
out the early light accumulation pass before
SSAO and doing that in the blur pass and
removing the allLightFbo). It’s possible to
get an idea of the cost by commenting out
everything that pertains to colour bleed in the
SSAO and blur shaders: using a kernel size of 64
this results in an average time (over 10 seconds)
per frame of 117.65 ms, a reduction of 21.17 %
compared to the same number of samples with
colour bleed. Commenting away those lines
of code removed a lot of texture samples (1
from the normal buffer and 0-1 from the direct
light buffer per occluder in the SSAO shader)
and several lines of calculation (dot products,
normalization, projections along with lots of
arithmetic calculations).

This implies that screen space color bleed and
SSAO combined isn’t much more expensive than
SSAO alone, at least for our implementation.

References

[1] John Chapman. SSAO Tutorial. 2011. url:
http : / / john - chapman - graphics .

blogspot.se/2013/01/ssao-tutorial.

html?m=0 (visited on 12/03/2015).

[2] Phil ’mtnphil’ Fortier. Know your SSAO
artifacts. 2013. url: https : / / mtnphil .

wordpress.com/2013/06/26/know-your-

ssao-artifacts/ (visited on 12/08/2015).

[3] EDAN35 High Performance Computer
Graphics. Assignment 2 : Deferred Shading
and Shadow Maps. 2015. url: http://cs.
lth.se/edan35/assignment- 2/ (visited
on 12/14/2015).

[4] learnopengl.com. SSAO. url: http : / /

www . learnopengl . com / # ! Advanced -

Lighting/SSAO (visited on 12/14/2015).

[5] T. Ritschel, T. Grosch, and H-P. Seidel.
“Approximating Dynamic Global Illumina-
tion in Image Space”. In: Proceedings of the
2009 symposium on Interactive 3D graphics
and games (2009), pp. 75–82.

[6] Peter Wester. “Tech Feature: SSAO and
Temporal Blur”. In: (2014). url: http :

//frictionalgames.blogspot.se/2014/

01/tech-feature-ssao-and-temporal-

blur.html (visited on 12/14/2015).

10


