
The Lighthouse
Project in EDAN35 High Performance Computer Graphics

Anton Klarén∗ Valdemar Roxling•

Lund University
Sweden

Abstract
Graphical effects that affects the environment are very important in
realistic real-time rendering, as they give the scene the ”right” feel-
ing. In this project we have created scene consisting of a lighthouse
at night surrounded by a big ocean. With only a few light sources
and heavy rain, together with sporadic lightning strikes, realistic
shadows, detailed terrain and a Christmas touch, the scene gets the
dark and stormy-night feeling we were looking for.

1 Introduction
A single graphical effect can be very nice, but in most real appli-
cations they are combined together with several others to create the
final image. So naturally we had to develop and combine multi-
ple algorithms and position suiting models and lights to be able to
compose the entire scene and get it right.

Along with fancy algorithms and detailed models a lot of the
feeling comes from the details, like the rain and the waves moving
in the same (wind) direction, the rain being illuminated by the light
sources, and creating splashes on horizontal surfaces. Together with
realistic rain falling rate, correct lighthouse spotlight rotation speed
and much more.

2 Framework
To create this project we have developed an open-source graphics
framework in OpenGL and C++, using a deferred-shading pipeline,
called Smegod1.

3 Effects & Algorithms
To compose the scene we implemented many different algorithms
to create different effects, but also reused some from previous
projects. Both the ocean, implemented using a shader-based ap-
proach, and the spotlights with shadows, created using deferred
shading and calculating a shadow map per light source, are reused
and will not be explained in more detail.

3.1 Rain
The rain in the scene is mostly based on the research in [Tariq
2007]. It is created using a billboard technique where single points
are expanded to quads in a geometry shader and later textured in a
fragment shader. The billboard quad is always facing the camera,
to keep the rain visible at all times. This is accomplished by calcu-
lating the plane that is spanned by the vector from the point to the
camera, and the vector along the animation direction of the rain. In
our rain we sample the texture from several different texture based
on a random value to give it a more natural look.

Another approach to render rain is to render it in screen space,
this as one major disadvantage though; the rain will not interact
with the lightning pass in any computational feasible way. By ren-
dering the rain as particles in world-space we can make calculations
based on the actual position of each rain drop in the scene.

∗fys09akl@student.lu.se, anton@klaren.it
•dat11vro@student.lu.se, valdemar.roxling@gmail.com
1https://github.com/Roxling/smegod

To move the points a technique called transformation feedback2

is used. Transformation feedback is the process of capturing the
output from a vertex stage (vertex, geometry, tesselation etc.) and
save the data to a buffer. This buffer can then later be used as input
to a OpenGL draw function. Due to a limitation in the hardware
you are not able to render from the data captured during the same
frame. To circumvent this limitation we used two separate buffers,
one for updating (animating), and one for rendering. After each
frame the two buffers are swapped so that the updated data will be
rendered the next iteration. This process is done entirely on the
GPU and for a parallel operation such as move points along vector
this method will be very efficient and able to handle well above a
million points in real time.

The update of the rain moves the points one step along a vector
based on the frame rate and this will resulting in a falling motion
given the right parameters of the vector. In order to add some com-
plexity to the scene the translation vectors are randomly generated
with a set of constraints that will keep them in a downwards mo-
tion. Once the points are below a certain threshold the are moved
to a random location above the current camera position; thus all the
particles are reused without the involvement of the CPU.

To give it move realistic look we decided to add a splashing effect
to all surfaces with normals primarily in the positive y-direction.
This will create the feeling of the rain actually impacting the ob-
jects. This approximation works as long as no indoor environments
are present, since it will rain on all surfaces regardless if there is a
roof or not. A final image of the splashes can be seen in figure 3
with close inspection.

Splashes are added to the normal and specular buffers of the
g-buffer and is thus added to the lightning pass of the pipeline.
The splashes are also animated with the help of 3D textures where
the additional axis in the texture represents time. The textures are
mipmapped and then linear interpolated to smooth out the otherwise
jerky animations. To remove repetition in the pattern, the splash
bumps are randomly moved with an offset between each full ani-
mation cycle.

3.2 High Dynamic Range - HDR
HDR is a way to add better contrast to your scene. Regular lightning
is often done in 8 bit RGB channels and will thus limit the number
of discrete colors to 2563. According to [Fabien Houlmann 2006]
HDR expands the channels to be float values, typically 16 bit, and
will greatly expand the color space during the light calculations.

Once the calculations are done, the lightning buffer must be
mapped to the 8 bit RGB space in order to send the image to the dis-
play. This process is called tone mapping and in our scene we chose
a tone mapping algorithm known as exposure mapping. Exposure
mapping mimics the human eye by simulating the iris controlling
the size of the pupil and is very intuitive to use.

To add extra light to specific areas such as the lamp posts and the
Christmas-lights, we used the alpha channel of the images to spec-
ify emittance. This will reduce the amount of texture storage since

2https://www.opengl.org/wiki/Transform Feedback



no new emittance-texture is loaded, but it removes the possibility
of using transparent objects without changing the structure.

Everything that is over-exposed to light, with color values ex-
ceeding the normal range of visible colors will be added to the
bloom buffer.

3.2.1 Lightning strikes
To generate the effect of lightning strikes we used the fact that our
HDR tone mapping is a simplified model of the human eye. The ex-
posure value is deciding how much the camera will react on light,
and is set very low in this particular scene, to create the feeling of
a late evening or night. By occasionally adding a sinus peak, in-
creasing the sensitivity to light by a factor around 100 times bigger
everything becomes very bright for a short amount of time as the
camera gets ”blinded”. The result feels surprisingly natural.

3.3 Light-blur on distance
In order to add a glowing effect to the lights a bloom buffer were
created. This buffer is filled with all the light from the light buffer
with intensity greater than 1.0, and will then only contain the re-
gions with that are over-exposed to light. To get the blur effect, a
Gaussian kernel convolution is applied to the buffer and the result
is added to the final image.

One problem with Guassian blur is the computational cost of per-
forming a full convolution. Thankfully, the kernel can be separated
into a column and a row vector, that can be applied separately; this
is known as a separable convolution. According to [Eddins 2006],
filtering a M-by-N texture with a P-by-Q kernel requires roughly
MNPQ multiplications and additions. By using a separable version
this complexity is reduced to one iteration with MNP and one with
MNQ, resulting in the final cost of MN(P + Q).

This optimization were not enough to get a decent frame rate so
two additional methods had to be implemented. The bloom buffer
is sampled at half of the resolution before the blur occurs and then
interpolated back to the original resolution. Due to the smaller res-
olution, the size of the kernel can be reduced while still producing
the same blur-factor. As a plus, the interpolation back to full reso-
lution will add to the blur as well.

The last optimization exploits the texture hardware in the GPU
to perform interpolations between texels. Since the texture lookup-
calls allows one to specify a coordinate between two texels, the
resulting value are the weighted values of the closest textels. By
calculating offsets based on the Gaussian kernel the number of tex-
ture lookup-calls can be reduced by 50%.

Blurring the buffer with the first version of Gaussian blur took
about 28 ms, while the optimized version took 2 ms on the same
hardware, resulting in 14 times the performance.

3.4 Cobblestones
The heavy detailed cobblestones are created by a neat trick, called
parallax occlusion mapping, where the depth between the stones
are just a texture illusion. To produce this effect we need to per-
form ray tracing for each fragment and adjust the texture coordi-
nates accordingly. Since we are not able to do actual ray tracing an
iterative process called ray marching is used instead, as described
by [Donnelly 2005].

The algorithm is illustrated by figure 1. We start by calculating
the vector from the fragment to the camera and then move along
that vector until we hit the desired surface. The final coordinates
are based on that point and later used in the lookup-call for the
diffuse, normal and specular textures. The number of iterations
are based on heuristics and in our implementation will be limited
between 20 to 40 iterations depending on the viewing angle. This
is a reasonable heuristics since we need more iterations for shallow
angels than step.

The desired surface is stored in a single 8 bit channel texture and
is called a height map. Since its just a 2D texture one limitation is

Figure 1: Illustration of the parallax occlusion mapping algorithm.

that you can not have overhang in the resulting geometry. The final
result can be seen in figure 3.

4 Results
The final result really captures the feeling we were looking for, with
the geometry, rain and light effects all working together, as can be
seen in figure 2. The entire scene runs perfectly fine in a reason-
able frame-rate on any modern graphic chip at most a few years
old. In this particular demo we render six lights with shadow maps,
one million rain drops, use parallax occlusion mapping on all dif-
fuse textures with 20 to 40 samples and post-process with HDR and
bloom effects without any problem.

Figure 2: Overview of the scene.

A closer look on the cobblestones really shows the amount of
details this algorithm can give to flat textures, as seen in figure 3,
along with the animated rain-splashes also visible by closer inspec-
tion.

Using many different raindrop textures along with realistic ani-
mation and falling direction makes every raindrop unique, as can be
partly be seen in figure4. And together with the nice illuminating
effect caused by the light sources, and distance to them, the rain
comes alive and feels natural.



Figure 3: Parallax occlusion mapped cobblestone texture together
with rain splashes

Figure 4: Raindrops affected by light.

To get all of these results combined into a final image we used
several different buffers to hold different states and parts of the im-
age, as illustrated in figure 5.

5 Discussion
We managed to get every algorithm working in the intended way,
but not without some of them to cause trouble in one way or another.
Some approaches were very inefficient and dropped the frame-rate
to unacceptable levels, and had to be reworked to get a similar
graphical result in a more efficient way.

We also struggled a lot to get every algorithm running on several
different GPU’s, from both AMD and Nvidia, where OpenGL often
gave different graphical results, or did not work at all, and had to
be rewritten. Almost every time it turned out that we had done
something to cause undefined or unspecified behavior, giving us
these problems.

6 Conclusion
Writing efficient OpenGL code that both works and looks good on
every GPU is close to impossible, and fixing these problems takes
away a lot of time from actually writing the algorithms, as most of
the time is spend to get OpenGL to do what you want it to do.

Figure 5: An illustration of some of the buffers used to create the
final image.

Acknowledgments
• Joey de Vries for his amazing articles about modern
OpenGL.3

• Etay Meiri for examples on transformating feedback and de-
ferred shading.4

• Azlyirnizam for the lighthouse model.5

References
DONNELLY, W. 2005. Chapter 8. per-pixel displacement mapping

with distance functions. In GPU Gems 2: Programming Tech-
niques for High-Performance Graphics and General-Purpose
Computation (Gpu Gems). Addison-Wesley Professional.

EDDINS, S. 2006. Separable convolution. MathWorks, October.

FABIEN HOULMANN, S. M. 2006. High Dynamic Range Render-
ing in OpenGL. Université de technologie Belfort-Montbéliard,
19 June.

TARIQ, S. 2007. Rain. NVIDIA Corporation.

3http://www.learnopengl.com/
4http://ogldev.atspace.co.uk/
5http://tf3dm.com/3d-model/light-house-enterable-96732.html


