
EDAN35 Project - Voxel Terrain
Mattias SImonsson

e-mail: dat11msi@student.lu.se

Abstract—In this paper, we describe a method for procedurally
generating a terrain mesh using voxels. We create chunks of
voxels using a 3D noise function and apply the Marching Cubes
algorithm to turn the voxels into meshes. We then texture this
mesh using triplanar texturing and render it using RenderChimp.

I. INTRODUCTION

Procedurally creating terrain is used in several areas of
computer graphics, a notable example being video games. A
common way to do this is to represent the terrain as a 2d
heightmap, a texture where each pixel represents the height of
the terrain at that point. This has the limitation of only allowing
a single height at each point which means that generating
caves, cliffs and overhangs become much harder. Another way
to represent the terrain is by using a 3d grid of voxels. This
approach allows us to have multiple heights on a point on the
terrain and in general allows for much more complex shapes,
but it also requires much more memory. Still, we are going to
use a voxel representation for the terrain in this project.

II. APPLICATION

The first thing we need to generate a nice looking seemingly
random terrain is a noise function. A noise function can be
thought of as a seeded pseudorandom number generator. You
give it a value and it returns another value. If you pass it
the same value twice, it returns identical values each time.
The most well known example is perlin noise, which is a
very popular noise function. We are going to use a refined
version of perlin noise, called simplex noise. Simplex noise
was created by Ken Perlin[1], who also created perlin noise,
to overcome the limitations of perlin noise. Simplex noise is
also faster in higher dimensions. We are going to use a c++
implementation[2] based of simplex noise based on a paper
Stefan Gustavson[3]. To allow for caves and cliffs in the terrain
we are going to use the 3D version of Simplex Noise with
9 octaves (noise function applied 9 times for each point at
different frequencies) of noise.

After we create our voxels we need to turn them into a mesh
to be able to render them. To do this, we are going to use
another popular algorithm, the Marching Cubes algorithm as
described by Paul Bourke[4]. The Marching Cubes algorithm
basically turns a density function into a mesh. We give the
algorithm eight voxels at a time and it uses lookup tables
(which means it’s very fast) to represent the voxels as 0-5
triangles.

Since the Marching Cubes algorithm requires a density
function to create a mesh, we need to think about what values
we set our voxels to. We should think of each voxel value as

Figure 1. End result

the density of the terrain at that point, anything above density
0 is air, and anything below 0 is ground. We populate the voxel
grid using 3D Simplex Noise and subtract the height of the
voxel from the noise value to get a solid bottom layer and non-
solid top layer. Then we iterate through the voxels and collect
the triangles generated by the Marching Cubes algorithm. We
remove duplicated vertices and generate vertex normals for
each vertex by averaging the face normals of all triangles the
vertex is a part of.

Now we have a procedurally generated terrain mesh without
color, texturing is needed. Creating proper texture coordinates
while generating the mesh is very very hard, if not impos-
sible, so we are going to use a technique called Triplanar
Texturing[5]. At each pixel we do three texture samples per
texture using the world coordinate of the pixel, one sample
using x and y, one using x and z and one sample using y and
z. We then weight these samples using the normal vector of the
pixel so that pixels facing straight up (normal (0,1,0)) only use
the x-z sample and so on. This gets us nice texturing without
stretching the texture at the cost of needing three samples.

We would also like to use more than one texture, a terrain
doesn’t just exist of rock or grass. Using the normal vector of
each pixel, we can decide what texture to use. We calculate
the dot product of the normal vector and the up vector and
compare it to a threshold. If the dot product is above the
threshhold, a grass texture is applied, otherwise a rock texture.

III. RESULTS

I am overally happy with how the terrain looks, the algo-
rithms worked as I expected. The mesh generation produces



a noticable framerate drop but that is partly mitigated by
spreading out the generation over multiple frames. There is
a memory leak somewhere that I have not been able to find
which leads to the program crashing after walking too far
away from the start point. I don’t think I’m leaking memory
anywhere but I’m not used to c++ so I could very well be.
The leak finding methods I tried gave no results.

IV. DISCUSSION

There are several things you could do to improve the look
of the terrain. Bumpmapping could be incorporated using
triplanar texturing, ambient occlusion could also be done to
make it more realistic, but most of my time was spent trying
to optimize the terrain generation and the memory leak. I did
try to reuse all vertex buffers, voxel grids are also reused, but
to no avail. I am happy with how fast the Marching Cubes
algorithm is though, I expected it to be much slower.

REFERENCES

[1] http://en.wikipedia.org/wiki/Simplex noise
[2] http://www.6by9.net/simplex-noise-for-c-and-python/
[3] http://webstaff.itn.liu.se/ stegu/simplexnoise/simplexnoise.pdf
[4] http://paulbourke.net/geometry/polygonise/
[5] http://http.developer.nvidia.com/GPUGems3/gpugems3 ch01.html


