
Project in EDAN35, High Performance Computer Graphics
— Bubbles —

Johnny Dang∗ Rikard Olajos†

Lund University
Sweden

Abstract
We generated realistically looking bubbles using OpenGL and the
RenderChimp framework. The bubbles are using translucency,
noise functions, and dynamic cube maps.

1 Introduction
The goal of the project was to generate photorealistic bubbles. Our
motivation was that we wanted to do something that had not been
done before in previous years of the course and was on an appro-
priate difficulty level.

2 Algorithms
We identified three different effects that had to be implemented for
generating the bubbles. Those were the translucency, the rainbow
colour pattern often seen in soap bubbles, and the reflection of the
environment on the outside as well as the inside of the surface of the
bubbles. One could think that refraction is also needed when sim-
ulating bubbles, but by looking at various pictures of soap bubbles,
we concluded that the refraction in the bubbles was unnecessary to
implement, as it had almost no impact on the bubbles. Physically,
this is due to the infinitesimally thin bubble surface. See Figure 1
for real life bubble.

Figure 1: A real life soap bubble. By using many pictures like
this one, we decided on how and which algorithms that should be
implemented. Source: [Alvesgaspar 2007].

2.1 Translucency
We wanted the bubbles to be more transparent in the middle while
still having a clear and coloured edge, like the bubble in Figure 1.
This was implemented in the fragment shader by letting the alpha
value depend like this

α = const.− f(N · V ),

where f(N · V ) is a function that depends on the scalar product
between N , the normal vector, and V , the view vector.
∗e-mail: tfy11jda@student.lu.se
†e-mail: lat11rol@student.lu.se

Looking at Figure 1 we can see that the bright reflections are
dominant and that the sky is not only reflected on top of the bubble
but on the inside as well. This meant that we needed to draw the
inside of out bubbles also; wherefore culling was disabled.

To get the transparency right, the following equation was used
for the alpha blending

RGBd = As ×RGBs + (1.0−As)×RGBd, (1)

where RGBs is the source RGB value outputted from our shader,
RGBd is the RGB value of the destination, i.e. the value on the
framebuffer, andAs is the alpha value of the source. The equation is
a simple interpolation between the destination value and the source
value, using the alpha of the source as the interpolation variable
[Graham 2013].

Equation 1 can be rewritten in the following manner

RGBd = RGBd +As × (RGBs −RGBd). (2)

Here we can see a problem with the transparency. Lets say that
we have render a bubble to the framebuffer and the would like to
render another one behind it. Because the last part in equation 2
(RGBs − RGBd) does not commute, the second bubble that we
are trying to render behind will be rendered on top instead [Graham
2013]. This result is nasty.

The solution is to sort the bubbles in a order so that they are
rendered from the furthest to the nearest and therefore using the
blend equation in the right way.

2.2 Noise
Ian McEwan’s simplex 3D noise function was used as noise func-
tion [Ian McEwan 2011]. The simplex noise was used at two points
in the generation of the bubbles. To create a bit of a wobbliness, that
occur in large soap bubbles, we used simplex noise passed through
a sine function to alter the positions of the vertices in the vertex
shader.

We coloured the bubbles in the fragment shader using a premade
colour gradient texture, that we constructed as close as possible to
the colours of real life bubbles. See Figure 2.

Figure 2: The colour gradient used for colouring the bubbles.

The colours of the bubbles are made up by two parts. The first
part is a radial component that creates a radial colour gradient by
mapping the same value that the alpha channels uses to the colour
gradient in Figure 2. The second part of the colour is based on the
simplex noise which gives a bit of variation to the colour of the
bubbles. These two parts were then mixed into a colour value. This
procedure gives the bubble a colour similar to the real bubble in
Figure 1, i.e. a colour that gradually changes closer to the edge but
with some variation.



2.3 Dynamic Cube Map
In the previous course, we simulated a reflective surface by apply-
ing a cube map texture using six static images taken in beforehand
from the same location in six different directions. This can give a
quite realistic reflection, but because the images are static, the illu-
sion breaks down as soon as the the scene around the object changes
or when the object moves around.

To handle the changing reflections, we choose to implement dy-
namic cube mapping, where instead of having six static images, the
images are taken continuously. Simply put, during the computa-
tions for every frame, six different cameras, which are looking in
different directions, are moved to the centre of a bubble. The scene
is then rendered once for every camera and these frames are then
stored as textures for a cube map. The cube map is then stuck onto
the bubble in the same way as with the static cube mapping.

The implementation of the dynamic cube mapping was of course
not this straight forward. RenderChimp has an implementation for
storing the rendered scene as simple textures, but unfortunately
there is no equivalent function for creating cube map textures.
Therefore we had to write all the code to create cube map texture
ourselves [OpenGL.org 2014].

We started by generating a framebuffer, an appropriate texture to
hold the cube map texture, and the six cameras. The cameras were
moved to the position of the bubble and the scene would be rendered
for each camera. Because the final scene used deferred shading,
in which different parts of the scene are rendered separately into
different framebuffers and then rendered once again together, we
could not just bind our framebuffer and render the scene, as it would
just get overridden. Instead, the different parts had to be rendered
first, and just before rendering the whole scene together, we would
bind our framebuffer instead of letting the program render onto the
screenbuffer. Afterwards the cube map texture is assembled and
loaded into the shader for the bubble. This process is done for every
bubble and then the whole scene including the bubbles are rendered
one final time for the view camera.

3 Results
In Figure 3 the radial colour components is presented. We can
clearly see how the colour changes towards the edges. The noise
generated colour component can be seen in Figure 4. This shows
that the colour gradient is continuous over the whole surface of the
bubble. The reflections generated by the dynamic cube mapping is
shown in Figure 5. The final result is presented in Figure 6. The
different components are blended with different weights.

Figure 3: Bubbles with only the colour generated by the radial com-
ponent as texture.

We found that when using just the dynamic cube map texture
together with the alpha channel the resulting bubble looks similar
underwater bubbles. See Figure 7.

Figure 4: Bubbles with only the colour generated by noise as tex-
ture.

Figure 5: Bubbles with only the dynamic cube mapping as texture.

Figure 6: The final result with all the different components together
on the bubble.

Figure 7: Bubbles with only the dynamic cube mapping, but with a
varying alpha as described earlier, as texture.



4 Discussion
The translucency worked well after the sorting. However, because
we disabled culling on the bubbles and we only sorted the bubbles
but not the fragments within the bubbles, the far side of a bubble
might be rendered on top of the near side when viewed from certain
directions. This can be solved by sorting the triangles within the
bubble or since the bubbles are spherical, the bubbles could just
simply be rotated so that the right side is always facing the camera.
A rotation like this would not interfere with the noise functions as
they depend on the world space coordinates.

The noise function works quite well for simulating the colouring
and the wobbling. The use of the noise function and the premade
colour gradient was more of an esthetical approximation to get a
realistic look, though it is not based on any scientific observations.

The dynamic cube map works well for the reflections but is in
its very nature computationally very expensive. However, this can
be alleviated a bit by using various approximations and cheats. For
instance, not every cube map has to be computed for every frame.
You could for example update every cube map every nth frame or
you could just update a few cube maps every frame. Another way
to optimise it could be to compute the cube map for one bubble and
then apply the same cube map to bubbles in the near vicinity.

References
ALVESGASPAR. 2007. Wikipedia.org. http:
//en.wikipedia.org/wiki/Soap_bubble#
mediaviewer/File:Reflection_in_a_soap_
bubble_edit.jpg [18 Dec 2014].

GRAHAM. 2013. Order Independent Transparency, OpenGL Super
Bible. http://www.openglsuperbible.com/2013/
08/20/is-order
-independent-transparency-really-necessary/
[8 Dec 2014].

IAN MCEWAN. 2011. Simplex 3D Noise. https:
//github.com/ashima/webgl-noise/blob/
master/src/noise3D.glsl [8 Dec 2014].

OPENGL.ORG. 2014. Framebuffer Object Examples.
https://www.opengl.org/wiki/Framebuffer_
Object_Examples [8 Dec 2014].


