
Fire rendering with fluid simulation and ray casting
Hanna Björgvinsdóttir∗ Robin Seibold†

Lund University
Sweden

Abstract
This paper aims to describe a solution of real-time fluid simulation
in general, and fire simulation in particular, as well as ray-casting.

1 Introduction
Fluid and fire animations are present in most games nowadays.
Graphics cards are getting more and more powerful, and yet the im-
provement often seems to bypass these animations. Creating fluid
and fire animations that look real is challenging, and with realism
comes the price of render time.

To take on these challenges, the objective of this project is to
render an authentic fire in real time.

2 Algorithms
To achieve the visual effect of a three dimensional fire, simulation is
needed, and implicitly a rendering approach to display the simula-
tion result. Below is a description of the algorithms used to achieve
this.

2.1 Fire simulation
The algorithm used for simulating the density and movement of the
fire is based on Jos Stam’s real-time fluid dynamics solver [Stam
2003]. In his article, Jos Stam explains the elements needed to
simulate a density and velocity driven 2D fluid. Expanding this
stable fluid solver to a three dimensional space is straightforward.

The structure of the fluid is represented by a three dimensional
matrix where each cell holds the velocity magnitude and direction,
as well as the current density for that cell, as illustrated in figre 1.
The three main steps of the fluid solver algorithm are the diffusion,
advection and projection steps.

Diffusion is the process of direct neighbouring cells exchanging
density, and in the advection step density is moved, depending on
the velocity pattern. The last step, projection, forces the velocity to
be mass-conserving.

Figure 1: An illustration of the fluid representation

Sources of density and velocity are constantly added to the sim-
ulation, which along with diffusion and advection parameters con-
trols the outcome of the simulation.
∗dat11hbj@student.lu.se, hanna.bjorgvinsdottir@gmail.com
†dat11rse@student.lu.se, robinbobseibold@gmail.com

In this implementation, the simulation is run on a separate thread
on the CPU. In each iteration of the simulation, the density of every
cell is encoded into the corresponding voxel of a 3D texture.

The resulting 3D texture is passed to a shader, where ray-casting
is performed.

2.2 Ray-casting
In order to visualise the fire simulation, ray-casting is used. The
ray-casting is achieved by placing two identical cubes, one back
face culled and the other front face culled, where the fire is to be
positioned, and render them into separate buffers, using each frag-
ment’s normal as color, as described in subsection 30.3.1 in [Crane
et al. ].

Figure 2: The enclosing cube, back- and front face culled, used to
calculate entry, exit, and direction of rays

The colours stored in the buffers are used as coordinates repre-
senting the entry- and exit points for the rays, and subtraction be-
tween the two values results in the direction of the ray. A step-size
approximately the size of one voxel is used to step through the cube
along the ray path, from entry point to exit point, gradually accu-
mulating density from the density texture. The final density value is
in turn used to fetch an appropriate colour from the texture in figure
3, which is then added to the final output colour.

Adding the colours from all rendering stages in the final render
pass gives the effect of transparency, well suited for the fire.

Figure 3: Texture used for setting fire colour

3 Result
The resulting fluid simulator and ray-casting implementation were
integrated into a pre-existing scene in RenderChimp. Images of the
fire are shown in figure 4 and 5.

The simulation was run on a MacBook Pro, with a 2.4GHz Intel
Core i7 processor and a 1024 MB AMD Radeon HD 6770M graph-
ics card. Using a fluid grid of size 32 × 32 × 32 the frame rate
reached 60fps, while a size of 64×64×64 reduced it dramatically.



4 Discussion
During the development of the simulation the result was not ren-
dered, which made it extremely hard to validate the work being
done. The inability to test the fire simulation in the early stages
turned out to be one of the most challenging aspects of this project.

Another challenge was relating the fire to all of the geometry.
Placing the fire in a pot much smaller than the cube used in the
ray-casting initially created horrible artifacts. The culling problem
was partly solved by placing a cone bottom up in the pot, and ren-
dering only fire inside the cone. This resulted in some sharp edges
however, which were removed by placing a square plane on top of
the pot, always facing the camera’s x- and z-coordinates, and make
sure the fire was covered by either the cone or the plane before be-
ing rendered.

The conversion from fluid simulation to fire was simplified in
this implementation. More advanced methods include temperature,
light scattering, and algorithms for deciding the durability of par-
ticles[Nguyen et al. 2002]. The simplification consists of decid-
ing colour solely based on the fire’s density, and using a cooling
constant to make particles further from the flame origin extinguish
faster. A thick layer of density was added towards the bottom of
the cube, and velocity placed underneath, resulting in an aggressive
flame.

When the camera is placed inside the cube used in the ray-
casting, no entry-point is registered, and therefore no fire is shown.
This is an unpleasant artifact that could not be removed due to time
limits.

Instead of using ray casting for volume rendering, another vi-
able option is view-aligned slicing. This was the initial plan for this
project, ray-casting was chosen instead, since it felt more compre-
hensible.

The fact that the performance for a fluid simulation volume of
size 64× 64× 64 decreased rapidly, invites the possibility for im-
plementing the simulation on the GPU instead of the CPU. This is
a viable option since the computations in the simulation are many,
but basic.

5 Conclusion
In conclusion, the result is satisfying, however not as much in
screenshots as in motion. The project turned out to be more compli-
cated than expected, and there is plenty of room for improvements.

References
CRANE, K., LLAMAS, I., AND TARIQ, S. Gpu gems 3 chapter 30.

real-time simulation and rendering of 3d fluids.

NGUYEN, D. Q., FEDKIW, R., AND JENSEN, H. W. 2002. Physi-
cally based modeling and animation of fire. Tech. rep., Stanford
University.

STAM, J. 2003. Real-time fluid dynamics for games. Tech. rep.,
Alias — wavefront.

Figure 4: The resulting fire, placed in a pre-existing scene in Ren-
derChimp

Figure 5: The resulting fire, from another point of view


