
Guidelines for Project in EDAN35 High Performance Computer Graphics
Adam Backstrom och Ragnar Wernersson∗

Lund University
Sweden

Abstract
In this project we have been looking in to two different effects,
ambient occlusion and volumetric lighting. The ambient occlusion
is implemented through the Alchemy AO algorithm with the use
of pseudo random sampling and a Gaussian filter. The volumet-
ric lightning is implemented through our own algorithm also using
pseudo random volume sampling.

1 Introduction
Our first goal was to create a game. The concept of the game was
to hide in the shadows, to have patroling guards with spotlights that
you would have to avoid. To do this we needed ambient occlu-
sion(AO) to get a realistic feel without light sources and volumet-
ric light(VL) sources so that the player could see the light sources
properly.

Unfortunately we were not able to finish the game dynamics but
we were able to implement both AO and VL. So instead we ended
up creating a demo to show these effects.

2 Algorithms
2.1 Ambient Occlusion
The algorithm we choose for AO was Alchemy AO 1. It uses the
geometry buffer to sample points in a circle with radius r around
the pixel. The depth buffer is then used so that only samples that
are inside the half-sphere with radius r outwards from the normal
of the current pixel are used.

Figure 1: Description of AlchemyAO. Picture from
http://graphics.cs.williams.edu/papers/AlchemyHPG11/
VV11AlchemyAO.pdf

The following algorithm is used to implement the effect:

A = max

(
0, 1 − 2σ

s

s∑
i=1

max(0, v̄i · n̄+ zCβ)

v̄i · v̄i + ε

)k

(1)

The overall idea of Alchemy AO is that the amount of light given
by a sample point is dependent on the angle between the normal

∗e-mail: ragnarwernersson@gmail.com, adamb3.14@gmail.com
1http://graphics.cs.williams.edu/papers/AlchemyHPG11/VV11

AlchemyAO.pdf

and the vector to the sample point (v̄). A high angle, 90 degrees
and above, will not give any ambient shadow while small angle
represent that the point is more covered by the sample and will get
less light, hence more ambient shadow.
σ represents the overall strength, s the amount of samples

and ε is to avoid division by zero. The beta is to avoid self-
occlusion which gives artefacts represented by lines orthogonal to
the viewer’s z-direction. zc is the linear depth in view coordinates.

The random function used for sampling is a pseudor-andom
function in the following format:

X = fract(sin(ā · b̄)) ∗ k) (2)

Where ā is sent in to the function and b̄ is a constant 2-vetor and
k is a scalar. For AO we start by using the pixels position as the ā
vector and two different values on k to get two different generated
values for the same pixel. These values define the radius and angle
of the first random sample point. For the next sample generation,
the previous two values are sent in as the new ā. The resulting
sequence will always be the same for each pixel. In this case this
effect is beneficial since the noise will be stationary on the screen.
The resulting buffer image can be seen in figure 4. To remove the
high frequency noise from the buffer a Gaussian filter is applied
at the resolve phase of the rendering. Final results can be seen in
figures 2 and 3.

2.2 Volumetric Light
The overall idea of our volumetric lightning is to simulate particles
in the air by sampling along lines, from the view point to the current
pixel, into the scene. Since we already render the bounding volumes
for each light with the DeferredSpotlight shader this effect can be
added to this. The only thing that need be changed is to remove
depth test for the shader. Instead of sampling the whole distance to
the current depth value, one can use that the light has a limit volume
by the shaped of a cone. First we transform the view position and
the direction into coordinate system of the current spotlight. This
gives the view position (x0, y0, z0) and the line direction (a, b, c).

The cone’s equation can now be expressed using the following
form:

x2 + y2 = (tan(α)z)2 (3)

Where α is the angle of the cone.
If we combine this with the line equation of the view direction:

x = a · t+ x0
y = b · t+ y0
z = c · t+ z0

(4)

These equations can be combined into a quadratic equation of t
which gives two solutions, if the line intersects the cone. These
represent the two intersection points. These points are compared
with the depth buffer to see if there are objects in front or in between
the two points to remove any unnecessary sampling. There are a lot
of different special cases depending on the view position and the
direction that has to be taken in to account apart from this. None of
which we will go deeper into.



The distance between the intersecting points are sampled. The
light in each sample is determined by the angular and distance fall-
off as well as weather the point is in shadow and added together. In
order to get a realistic effect one need small step sizes and this take
a lot of computing power.

2.2.1 Optimization
Firstly it is unnecessary to sample where the distance fall-off have
removed most of the light. A max radius from the light position is
used to remove this.

The second optimization is by using random sample distances
to avoid repeating patterns from the volumetric shadows. Since it
is the step size that is randomized the texture caching will still be
working. The random function used is the same as for AO but now
it is the scalar k that changes between samples for the same pixel.
By adding a dependence on the distance to the light cone for k the
previous effect where the same pixel always had the same pattern
is removed. In this case it is better if the noise varies over time
because it then gives the effect of small particles moving in the
air, rather than something that is stuck on the screen. This noise
effect is also reduced by applying a cross-filter on the volumetric
light buffer. The cross-filer also adds a better lighting effect where
strong lights bleed out into a cross, which means that the strength
of the filter can be increased without destroying the effect itself.

3 Results
The values used in the AO algorithm were:

σ = 1.0
s = 12
β = 0.005
ε = 0.01

(5)

The result can be seen in the following images. The following

Figure 2: Ambient occlusion

Figure 3: Ambient occlusion

Figure 4: Ambient occlusion buffer

pictures show the complete effects with AO and VL. With our cur-
rent ditance cap and random step-size sampling we currently have
an average of 10 samples and never more than 20.

Figure 5: Volumetric Light

Figure 6: Volumetric Light

4 Discussion
Even though we didn’t have time to implement the game mechanics
we had planned we are pleased with the results, it should not be too
hard to create the game out of what we have accomplished.

We still get some frame rate drop when the whole screen is
blinded by light. This is probably due to the long distance that
needs to be sampled. Also even though the effect is very pretty it



Figure 7: Volumetric Light

Figure 8: Volumetric Light

Figure 9: Volumetric Light

would be nice to reduce the noise even more, especially where the
difference in light strength is high.

5 References
McGuire, M., Osman, B., Bukowski, M., Hennessy, P. 2011
The Alchemy Screen-Space Ambient Obscurance Algorithm,
http://graphics.cs.williams.edu/papers/AlchemyHPG11/VV11AlchemyAO.pdf


