Rectilinear Texture Warping for Fast Adaptive Shadow Mapping

Bjarke V. Grgn*

Jon K. Sorensen®

Lund University
Sweden
December 11, 2012

Abstract

This report describes a project being a result of having followed the
course High Performance Computer Graphics taught by Michael
Doggett at Lund University, Sweden. It focuses on a tech-
nique called Rectilinear Texture Warping (RTW) for Fast Adaptive
Shadow Mapping, which is a way to create shadows in 3D scenes
that produces less aliasing artifacts than when using conventional
shadow mapping.

Shadows are a very important factor in computer graphics and
contribute largely to the level of realism. The quality of shadows
produced with RTW shadow maps are noticeably better than that of
conventional shadow maps while at the same time being very fast.

1 Introduction

We found the idea of using RTW for generating adaptive shadow
maps very interesting after having read Paul Rosen’s article “Recti-
linear Texture Warping for Fast Adaptive Shadow Mapping” [Rosen
2012], and decided to focus on that topic as the project for the
course.

The demand for higher quality, realistic images continue to be
an important challenge in the area of real-time computer graphics.
Shadows created using conventional shaddow mapping capture the
data on a uniform grid, independent of the scene and the part of
it that is inside the canonical view volume, thus usually produc-
ing “unnatural” edges on the shadows, unless the resolution of the
shadow map in increased or a blur is applied.

RTW produces single-layer textures with importance-based sam-
pling, and images are composed of a rectilinear warping map on top
of a conventional texture. The sampling rate can be varied because
of the warping map, and so RTW shadow maps are dynamic, adapt-
ing to view, scene and lighting conditions, and can produce shadows
that are noticeably better, without a significant cost in performance.

2 Algorithms

We implemented the algorithm for producing an adaptive shadow
map, as it is described in [Rosen 2012]. We used the Forward
Analysis approach to create the importance map, and our impor-
tance function is checks whether a point is inside the canonical
view volume or not. After having created a two-dimensional im-
portance map, we convert it into two one-dimensional importance
maps — one for the z-axis and one for the y-axis. This was done by
saving the largest value in a column or row to the respective one-
dimensional importance map. We implemented the two maps as the
red and green channels respectively in a 1D texture.

Next, we blurred the two 1D importance maps with a standard
Gaussian blur.

Then we calculated a warp map for both the x- and y-axis. This
was done using equation 1 in [Rosen 2012], and implemented by
looping over the corresponding 1D importance map for each pixel
in the warp maps. Note that it is necessary to convert the values
in the warp maps from [—1, 1] to [0, 1] before storing them in the

*e-mail: bjarkevg@gmail.com
fe-mail: jon.k.sorensen@gmail.com

Figure 1: Conventional shadow mapping.

Figure 2: RTW shadow mapping.

warp map.

Next we rendered the RTW shadow map. This was done by shift-
ing the vertices, in the shadow map vertex shader, according to a
lookup in the warp maps. Note that we shift the vertices around
in the canonical view volume, thus their coordinates range from
[—1,1]. This means the values from the warp map had to be con-
verted from the [0, 1] interval, in which they were stored, to [—2, 2],
as they must be able to warp a vertice from one end to the other of
the [—1, 1] interval. After this is done we proceed as conventionally
in the shadow map fragment shader.

In order to do a lookup in the RTW shadow map in the spotlight
shader, we did an offset on the texture coordinate according to the
value looked up in the warp map. Here the values had to be con-
verted to a [—1, 1] interval, since texture coordinates are in [0, 1].

After the offset is applied to the texture coordinate, the lookup in
the shadow map is done as conventionally.

3 Results

As can be seen when comparing conventional shadow mapping (fig-
ure 1) with the RTW implementation (figure 2), there can be a con-
siderably large difference in effective shadow map resolution when



Figure 3: Conventional shadow mapping with Percentage Closer
Filtering applied.

Figure 4: SFW shadow mapping with Percentage Closer Filtering
applied.

zoomed in on the shadow edges. The RTW implementation also
works nicely when applying a Percentage Closer Filter (figure 3 vs.
figure 4). Notice that we have used a box filter that only blurs with
the neighbors, so its easier to see the difference in resolution.

The advantage of using the RTW technique is noticeable (with
respect to increased shadow resolution) when comparing this tech-
nique to conventional shadow mapping techniques 5.

4 Discussion

As big an improvement as the increase in shadow map resolution
may be, our imlementation works rather poorly when moving the
camera around. The constant movement of the geometry in the
RTW shadow map shader makes the edges of the shadows shift

Figure 5: Conventional shadow map.

Figure 6: SFW shadow map.

Figure 7: A bug in the shadows.

around quite noticeably whenever the camera is moved. There is the
possibility that this would be less fo an issue if a better importance
function was used, or maybe the 1D importance maps simply need
to be blurred even more, to make the transitions in the warp map
more smooth.

There is also some problems with the shadows at certain angles
(figure 7). This is entirely due to our importance function, as can
be seen in figure 8, where the pillar that is the most important part
of the shadow map, is only a few pixels wide. When we use only
what the camera sees in the forward analysis mode, objects close to
the light can block entire rows/columns in the 2D importance map,
when the camera is behind these objects.

One thing we noticed that were crucial for this technique to yield
good results, was the need for using bilinear texture filtering, when
doing lookups in the warp map. If just using nearest, all texture

Figure 8: Shadow map when the shadows bug.



coordinates that fall within the same pixel in the warp map will be
offset by the same amount. As a consequence the sampling from
the RTW shadow map will not be smooth, and lead to very blocky
shadows.

We experimented with implementing an importance function
that also detected the edges of the shadows, but we found that the
specific parameters of such an implementation were quite hard to
get ’just right”.

We suspect that an implementation using the backwards analy-
sis mode would yield better results. In backwards analysis you do
the importance functions looking out from the camera, contra the
forward analysis where you do it looking out from the light source.
And this is the crux of the matter really, to determine what parts of
the shadow map is important from the camera’s viewpoint.

5 Conclusion

All in all we feel that with some time and care spend on perfect-
ing the importance function(s) this technique can be really useful
for producing high quality shadows. The biggest advantage is the
ability to maintain a low resolution shadow map, while being able
to retain high details in the shadows, thus saving a lot of memory
on the graphics card.

References

ROSEN, P. 2012. Rectilinear texture warping for fast adaptive
shadow mapping. In Proceedings of the ACM SIGGRAPH Sym-
posium on Interactive 3D Graphics and Games, 13D *12, 151-
158.



