Implementing realistic depth of field in OpenGL

Filip Nilsson*

Philip Ljungkvist

Lund University
Sweden

Abstract

In recent years the post-processing effects in games and simulations
have increased by a lot, both in number of effects and the quality
of them. This is due to the increased power of the graphic cards
and the never-ending demand from the public for cinematic-looking
games. One of these effects is called depth of field, or DOF.

In most photos theres a focus point, something the photogra-
pher wants the viewer to look at. This is often achieved by making
that point or object sharp, and everything out of focus unsharp. In
a camera this is caused by a combination of a number of factors,
including the lens, aperture and distance to the focus point. The
region that is sharp is called the depth of field. The depth of field
effect can also be seen by the human eye, so even if you do not
want depth of field for a cinematic look in your game you most
likely want it for the realistic look.

One phenomena that you will see with both your eyes and with a
camera is the Bokeh effect. This effect is as most visible when look-
ing at an unsharp light point and it will appear as a certain shape. In
a camera this is a side effect from the cameras aperture where the
shape of the aperture will determine the shape of unsharp points of
lights in the image, but is now a popular part of photography. Since
the shape of the Bokeh effect is based on the aperture, for the hu-
man eye light spots will appear as circles, while a camera will make
it look like a polygon.

In computer graphics there are some key problems when imple-
menting DOF. The first one is that by default colour information is
encoded in a nonlinear format. The result of this is that blurred parts
dont retain highlights. Another problem is that in-focus foreground
objects colours bleed into the background. Finally the last problem
occurs when there is a blurred object in front of a sharp background
but the edge between these two is sharp instead of blurred out.

Using our solution we have implemented steps to either solve or
minimize these problems.

1 Introduction

The gaming industry today wants to create as cinematic-looking
games as possible. Weve seen a rise in games where youre practi-
cally going through a movie but controlling the main character. One
important aspect of the cinematic look is depth of field. Already
a well-documented phenomena in photography, graphic program-
mers have been able to create some very realistic effects in games
and animated movies.

Depth of field is not a new phenomena in games thought, even
if its more prominent these days. One of the first games to use
the effect is Outcast, released in 1999, but it was still a rare treat
for another half a decade. With the release of a new generation of
game consoles and the rise of new game engines like Unreal Engine
3 depth of field is now a common effect featured in a lot of game.

Our aim with this project is to create a realistic depth of field
that will work when unsharp objects are both in front and behind
the plane in focus. We want a prominent Bokeh effect to further
add to the realistic look and make the light points stand out even
when blurred.

*e-mail: ada09fni @student.lu.se
Tet07pl3 @student.Ith.se

BARREL

Figure 1: Crysis 2 (2011) showcasing heavy DOF. Also notice the
circular Bokeh effect of the sparks and lights.

2 Algorithms or Application

The amount of blur a certain point, or pixel, will have in a game is
just like in photography depending on a number of variables. We
have chosen to implement a function using real optical laws to cre-
ate an as realistic effect as possible. The function returns a value
representing the Circle of Confusion, or CoC. The value will later
be used to determine within what radius around the pixel we want
to sample points to determine the color of the pixel. In other words,
a large CoC means that the point will be more blurred. The function
is as following [Demers 2004]:

F«(P—D)
OOC(D)_‘A*D*(P—F)l (1)

Variable Name Our value
A Aperture 20
F Focal length 7?
P Plane in focus

D Object distance

I Image distance 7

The focal length is calculated based on the plane in focus and
image distance with the following equation:

1 1 1
4 == 2
PTITF (@)
When looking at a graph of the function we see that points will
blur differently depending on if they are in front of the plane in
focus or behind.



Figure 2: The CoC function plotted in Matlab with a fixed Plane in
focus

2.1 Aperture

Since the camera in a computer generated scene dont have a physi-
cal aperture this is a value we chose our self. A lower value would
mean a wider depth of field or range of focus. We chose a quite
high value to better show the effect of depth of field. Object dis-
tance The object distance is the distance to the point or pixel the
fragment shader will colour. To find out this value we look at the
depth buffer already available from when creating the geometry.

2.2 Plane in focus

This is the distance between the camera to where the scene should
be the sharpest. We implemented a dynamic system to automat-
ically set the distance to the surface the mouse cursor pointed at.
In most games with DOF you either have a constant value, or let a
certain point on the screen always be the focus, like in the middle
where your aim is. To find the distance to the surface we again look
at the depth buffer.

2.3 Image distance

This is the distance between the lens and the film/sensor in a real
camera. This value depends on the scale of the scene. We have set
it to a value of 1.0.

2.4 Focal length

In a real camera the focal length is a measurement of how strongly
light converges or diverges. It depends on the distance to the plane
in focus and image distance.

2.5 Sampling

With a radius around the pixel mapped out by the previous func-
tion, we can now start looking at the colours of the pixels around it.
There are a number of ways to do this, and we will mention three.
They all use two for loops, one depending on rings and one depend-
ing on segments. For each ring starting from either the center pixel
or near it ranging out to the outer radius of the CoC, the shader will
sample the number of segments specified.

The first method will sample in a square around the pixel. This
is the easiest method to implement, but also gives the worst results
in terms of looks.

The second method will first only blur vertically, and then only
blur horizontally. This will make the program run a lot faster since
the sampling is now done in linear time instead of exponential.
However, the looks will take a hit. This method is still used in a
lot of games.

The last method is picking points in a number of circles around
the pixel. This will require more computational power, but will

overall give a better look. This is the method we used. No matter
what method is used, once all the samples have been added the
shader will have to divide with the number of samples to get the
average colour.

The sampling will have to be run for both the light buffer and
the texture buffer. Luckily, this can and should be done in the same
for-loops.

This is the basics of a DOF implementation and will create an
image where you have a region in focus and everything behind and
in front blurred out. However, this implementation will suffer from
a number of artifacts and problems.

2.6 Artifacts
2.6.1 Circle of confusion

Starting with the circle of confusion, if we take a look at the graph
we will see that the size of it for objects close to the camera will in-
crease towards infinity if we look at something far away. Likewise,
even though the functions growth starts to diminish the further from
the focus point the point is, we will get unpractical sizes of the CoC.
To fix this without changing the results for all other cases, we can
let the shader clamp the value of CoC to a maximum before using
it in further computations. We chose a value of 20.

Figure 3: Two cases where the circle of confusion is too big

2.6.2 Bleeding artifacts

One other artifact is called the bleeding or halo artifact. This prob-
lem will appear when a sharp object is in front of an unsharp back-
ground, and is as most prominent when the relative depth differ-
ence is bigger, often in close-ups. The background pixels close to
the edge between the background and foreground will have a big
CoC and therefore sample points from not only the background but
also the foreground. This will cause the colours of the sharp fore-
ground object to bleed out into the background. Once again there
are a number of ways to counter this problem. One could first only
render the background, blur it and then add the sharp foreground on
top of it. This would produce the most accurate results but would
be very computation heavy and unfeasible for most real-time appli-
cations. The two other methods are very similar and only differs in
one detail. If we compare the depth between the sample point and
center point we can detect if theres a big difference in depth and
not add that sample point to the average value of the pixel. This
is one of the options, but will cause the average to be shifted more
then necessary away from the edge between the background and
foreground since most samples will be on that side of the center
pixel. A better solution is to add the center pixels sample instead
if a sample point is in the foreground. This will still cause shift,
but much smaller. Getting rid of the shift completely would require
us to know the color of the points obscured behind the foreground
object which brings us back to the first, impractical, solution.

2.6.3 Sharp unsharpness

If we instead look at a similar case, where the background is sharp
and foreground unsharp we will see another artifact. The blurred
out foreground will have a clear and distinct edge making the DOF



Figure 4: A scene before and after we’ve fixed the bleeding artifact

effect look very unrealistic and cheap. In reality the edge should be
blurred out the same amount as the object in the foreground. The
cause of this artifact is similar to the bleeding artifact, but is instead
caused by the pixels in the background near the edge not sampling
the pixels of the foreground object. This problem is solved by blur-
ring all CoC values before using them to blur the light and textures.

Figure 5: A scene before and after we’ve fixed the sharp unsharp-
ness artifact

2.6.4 Light intensity

Normally images one a computer are stored in a nonlinear colour
format known as gamma-encoding. With this encoding dark
colours are encoded using more bits than bright colours. Since the
human eye is more sensitive to changes in darker colours this means
that a higher quality image can be stored using fewer bits per pixel
than if linear colour was used. When averaging the samples from
the CoC this encoding is a problem. Because of the nonlinear en-
coding darker colours have more influence than highlights on the
result of the averaging. This problem is solved by storing the result
of the light calculations in linear floating-point colour and gamma
encoding the colours in the last step of rendering where the pixels
are written to the framebuffer.

3 Results

When we first implemented the naive blur that only blurred based
on the pixels depth and nothing else we did not see any performance
hit. Once we fixed the artifacts by taking the steps described in the
section above, the frame rate went down by a lot, from 60 to as low
as 8. This was mainly due to a lot of texture look-ups in the depth
map when we compared each samples depth with the center pix-
els depth, but also some other factors. The extra texture look-ups
cant be optimized without using a completely different method as
far as we know, but we did manage to get the frame rate to what
we think are acceptable levels for this application by other optimi-
sations. Here are the biggest ones:

Using less samples for pixels with a smaller CoC value. Instead
of setting an constant value of samples for each ring independent
of the size of the ring we let it scale with the radius of the circle of
confusion. This made the sampling a bit more dynamic and gave
us a higher frame rate in most cases, especially in images with less

or moderate blur where we could gain as much as 10 frames per
second. This change also makes sure the Bokeh shape is always
solid. Before big Bokeh shapes would be made up out of a number
of spread out dots instead because the sample points just werent
enough. It does give us a lower frame rate in some extreme cases,
where most of the screen is very blurry since most pixels will have
a very high CoC and therefore a lot of sample points, but as well
explain later we think thats acceptable.

Figure 6: A scene with constant versus dynamic number of samples
per ring.

4 Discussion

As we wrote in the results section the performance got worse in
some extreme cases by adding dynamic sampling. These cases are
what photographers would call macro perspectives, extreme close-
ups, with extreme amount of blur. We might be able to remedy this
by adding more checks and making the implementation even more
dynamic, but this might at the same time worsen the performance
for non-macro perspectives. Since this implementation is meant for
real-time applications such as games the macro perspectives would
be very rare by default, and could be avoided completely by a num-
ber of solutions. The easiest being clamping the CoC function at a
lower bound then before making the blur look more unrealistic, or
clamping the amount of samples one ring can have, but then you
might lose the solid Bokeh shape, which is why we opted not to do
it for this demo.

In the so called macro perspectives the bleeding effect will some-
times appear again, despite the steps we took to minimize that ar-
tifact. This is because even the smallest depth difference will be
relatively big in the depth buffer, so if the focus isnt on the very
outer edge of the foreground object that point will also be out of fo-
cus and therefore should be blurred according to the normal rules.
Again, this problem is only for those very rare macro perspectives
and so we chose not to make it more dynamic as it would affect the
performance of the other cases. Even still, getting the dynamic sys-
tem to work and counter all the artifacts, for all different angles and
perspectives but the macro, was easily the most challenging part of
this project.

One of the things that worked well in this project was all the
different buffers. It was easy to get the information needed for
each pixel, and writing the sampling code was very straight for-
ward. Overall, the code for each part of the solution was easy to
implement once we had an clear plan of what we wanted to do to
solve the artifacts.

References

DEMERS, J., 2004. Depth of Field: A Survey of
Techniques. http://http.developer.nvidia.com/
GPUGems/gpugems_ch23.html. [Online; accessed 12-
Dec-2012].



