
Frosty and the flamethrowers in EDAN35 High Performance Computer
Graphics

John David Olovsson∗ Einar Holst†

Lund University
Sweden

Abstract

1 Introduction

This project takes the form of a very simple 3D computer game
with a tower defence theme. The graphics algorithms have been the
main focus of the project since the start. The project was chosen so
that it would be possible to demonstrate these algorithms while at
the same time providing an entertaining setting.

The project specifically focuses on two graphics algorithms that
were of much interest. These were parallax occlusion mapping
and the fire effect which was based on the effect used in the nVidia
Vulcan demo[Hubert 2007].

Parallax occlusion mapping was chosen in order to investigate
a more advanced replacement for simpler methods such as bump
mapping which do not give a good enough result for highly dis-
placed surfaces.

Creating a realistic fire effect in real time is a very interesting
subject for which there does not seem to exist many good publi-
cations. The nVidia Vulcan demo is one of the available sources
and also happens to give a reasonably realistic result with a lower
performance impact then expected.

2 Algorithms

2.1 Parallax occlusion mapping

Parallax occlusion mapping is a graphics algorithm that uses very
simple ray tracing within a height map texture in order to generate
a correct parallax displacement effect as well as occlusion upon the
geometry surface. The algorithm also provides for seamless inte-
gration with self shadowing by using the same simple ray tracing
method. This allows for rendering very complex scenes in real time
without needing an excessive amount of actual geometry detail.

The parallax occlusion mapping in this project was also com-
bined with bump mapping and phong shading.

Implementation The starting point for this algorithm is a stan-
dard phong shader with bump map support. The first additional
requirements of the parallax occlusion mapping is the height map
texture which specifies the displacement into the surface. It is im-
portant to note that most of the calculations in the algorithm should
be done in the tangent space of the surface. Especially the view
vector and light vector needs to be transformed into that space.

With the help of the view vector it is possible to calculate how
far along the surface the view vector would have to travel from in-
tersecting the actual surface to where it intersects the bottom of the
height map. This distance depends on the angle between the view
vector and the surface.

With the knowledge of this maximum offset along the surface it
is possible to choose a set of evenly spaced sample points along this

∗e-mail: dt07jo1@student.lth.se
†dt07eh2@student.lth.se

offset vector. These sample points will be the points on the height
map where the view vector is checked for intersection against the
height map. The first intersection will be used as the actual position
when looking up the color from the diffuse texture as well as the
normal from the bump map.

Since the maximum offset will be greater the closer the view
vector is to being parallel with the surface it would not be optimal
to use the same amount of sample points every time. Instead, the
amount of sample points will vary with the angle of the view vector
so that there are few sample points when looking straight down into
the surface and many sample points while looking far along the
surface.

After determining the point of intersection of the view vector it is
possible to do another trace, but this time towards the light source.
This makes it possible to determine if the point is in shadow or in
light.

Simply deciding if the fragment is in shadow or in light makes
enables the use of hard shadows. In order to use soft shadows with
this technique it is neccessary to determine how much the light ray
is below the height map. This is done by taking samples along
the light vector in the same manner as for the view vector, but this
time determining how close the samples are to the height map. The
closer they pass the height map the darker the fragment.

2.2 Fire effect

The fire in the nVidia Vulcan demo is based on using relatively
large particle quads which are rendered with a fire animation of
256×256 pixels with 64 frames per animation. Three distinct ani-
mations were used1. There were two fire animations and one smoke
animation.

The animation was provided in the form of a 256× 256× 256
3D volume texture where the animation would progress along the
Z-direction.

The emitter for the fire particles was configurable for different
sizes, density, particle life time and so forth. The particles were
also influenced by random variations to these and other parameters.
Additionally the particles were always rendered facing the camera.

Implementation The 3D volume texture used in the nVidia
Vulcan demo is distributed in a format which is not supported
by the RenderChimp framework. In fact, it seems to be a very
obscure format which it generally not supported by anything.
Fortunately someone who worked with a similar project has
managed to convert it into a Direct3D volume texture available
in a .dds format. Unfortunately there are not many utilities that
support volume textures in this format either. As a result of this
it was required to implement a Direct3D tool which would load
the texture, render each slice onto a Direct3D surface and finally
saving these surfaces to a PNG file. Given the resulting 256 frames
of the animation as separate PNG files it was trivial to combine

1A fourth animation was included in the Vulcan demo, but used for other
purposes.



these frames into one combined texture using the ImageMagick
montage command line tool using the following UNIX command:
montage flames%d.png[0-255] -geometry
’256x256+0+0’ -background transparent -tile ’64’
flames.png

The resulting image file had a resolution of 16384×1024 pixels
and occupied approximately 50 MB of disk space in uncompressed
form. Unfortunately neither RenderChimp, SDL nor OpenGL could
support images of this size. In order to load the image it first had
to be resized in such a way that each frame in the animation had
a resolution of 64× 64 pixels. This could then be loaded and as
mentioned in [Hubert 2007] it still yields a good looking result.

To create a good fire effect it is imperative to have access to some
form of particle system. This is done by using an Emitter which
can handle a static amount of particles through a USAGE STREAM
vertex array. Particles in the emitter have all their vertices col-
lapsed into their position in order to simplify keeping them aligned
towards the camera. In the vertex shader these vertices are trans-
lated outwards based on their texture coordinates and the rotation
of the particle.

The Emitter class is then wrapped into a FireEmitter class
which provides the particles with the behavior of fire particles and
deals with spawning and moving particles, randomizing their ap-
pearance and turning them into smoke. This class also sorts all of
the particles prior to rendering them so that the alpha blending can
work properly.

In order to provide maximum flexibility for the fire shader it
accepts inputs in the form of the size of the fire particle, the
rotation of the particle, the current normalized time of the an-
imation, a specification of which animation to display.

For the particle to behave as expected it is neccessary for them
to operate in world space rather then model space. This allows the
particles to act independently of the transforms that are applied to
the emitter.

The fire particles emitted from the flame thrower are spawned
using a small size and then gradually grow as they move away from
the emitter. Additionally they have a randomized maximum size,
life time, animation speed, rotation and fire animation type. This
gives the impression of a firece and volent fire which is appropriate
for a flame thrower.

3 Results

The parallax occlusion mapping performs a varying amount of sam-
pling steps in he height map depending on the angle of the view
vector. When looking straight into the surface then it only needs
very few samples2 and will run reasonably fast.

This project uses parallax occlusion mapping on the entire game
world terrain. The performance penalty of this is however some-
what managed since everything in the world except the road has the
maximum height, which means that no matter what the view vector
is the algorithm will always find the intersection in the first sample.

Generally however this algorithm is much more expensive then
regular bump mapping in that it uses significantly more texture
lookups and it also uses dynamic flow control. This is indicated
by the frame rates. When using plain bump mapping the frame rate
is 30 frames per second on the test computer while parallax occlu-
sion mapping brings it down to 10 frames per second even when
viewing the surface directly from above.

This particular scene does not have a big enough parallax occlu-
sion mapped surface to cover the entire screen when viewed from a
small angle to yield a good benchmark.

2The implementation used in this project it uses 2 samples when looking
straight into the surface.

Combining this algorithm with regular bump mapping and phong
shading is trivial and gives a very good looking result. Self shad-
owing is also relatively straight forward as long as fairly crude ap-
proximations are allowed. In either case the end result looks good.

The flame throwers in the projects use a particle system of up to
100 quad particles each. In the current version the particle engine
is somewhat suboptimal and uses six vertices for each quad particle
which yields a total of 600 vertices for each particle emitter. These
are all updated once during every physics update and all of the par-
ticles in each system are sorted after their distance to the viewer for
each rendered frame. With ten separate flame thrower towers, all of
which have this exact specification, this sums up to 1000 particles
and 6000 vertices.

In the full scene, the flame throwers reduce the frame rate from
ten frames per second to five frames per second on the testing com-
puter. This is measured when the map is using parallax occlusion
mapping. If regular bump mapping is used instead then the flame
throwers reduce the framerate from 30 frames per second down to
seven frames per second.

4 Discussion

The parallax occlusion mapping gives a very good looking result
which can compete with even the most detailed geometry, but at the
expense of more texture lookups. This project has not attempted to
represent the same surface as detailed geometry. Thus no compari-
son can be made to this alternative.

It is however very useful to be able to represent detailed surfaces
as very simple planes. The entire game world in the project is just
one big flat plane.

Also the self shadowing works well, at least for surfaces with
somewhat low complexity. The results definitely look believable.

It did however turn out to be all but trivial to implement the
shader for parallax occlusion mapping so that it updates the depth
buffer correctly. That problem is not solved in this project. It is
however not a critical problem in this project since it is just used
for a relatively flat ground plane.

The amount of sample points during the intersection testing in
the parallax occlusion mapping has been carefully tweaked to give
the best visual result at the same time as providing acceptable per-
formance. A much lower sampling rate would result in highly not-
icable visual artifacts while a much higher rate would result in too
low overall performance. This does however depend on the resolu-
tion of the height map, the depth of the surface and generally what
the height map looks like.

Much effort has been invested in tweaking the various parame-
ters of the fire effect. Especially the animation speed, the particle
creation rate and the particle size have required special attention.

It was not obvious that simply keeping the particles facing the
camera would give a natural looking result, but it did.

Unfortunately it was not easy to use the fire animation from the
nVidia Vulcan demo directly because of the unsupported file for-
mat. Many hours of work had to be wasted on extracting these into
a useable format which could have been spent on more important
work.

The original animation frames had a resolution of 256×256 pix-
els. It was not obvious that it would look convincing when this was
downsized to 64× 64 pixels, but on the scale that fires are used in
this project the result was good enough.

5 Conclusion

Unfortunately there was not enough time in the project to imple-
ment a fully functional game. Thus the project was limited to what
is most accurately described as a tech demo. There also was not



enough time to implement the additional algorithms that were con-
sidered for the project3.

Figure 1: Close up screen shot of the fire effect.

Figure 2: Distant screen shot of the fire effect.

References

HUBERT, N. 2007. Chapter 6. Fire in the Vulcan Demo. In GPU Gems.

3Initially the project was intended to include a grass animation algorithm
and glow as well.

Figure 3: Parallax occlusion mapping applied to a cobbled stone
road.

Figure 4: Standard bump mapping applied to a cobbled stone road.


