
Project in EDAN35 High Performance Computer Graphics

Cem Daniel Marcus

Lund University
Sweden

Abstract

In this paper, we describe the implementation of a few different
shaders: Fur, depth of field, screen space ambient occlusion (from
here on SSAO) and bloom. The algorithms of our implementations
will be described. We will also present the results of our solutions
and discuss around how they can be improved.

1 Introduction

We got the inspiration for the project from the lectures. Then we
dug a little deeper by watching tech-demos and browsing through
nVidias GPU Gems. We found so many interesting shaders that we
wanted to do that we realised that there would be no time to imple-
ment a full game. Besides, we already made a game in the previous
course. We worked with the Sponza scene from lab 2 because we
felt that it was an interesting enough scene in itself. It is also good
for displaying the most of the effects we wanted to implement.

2 Algorithms

2.1 Bloom

Bloom is an effect that appears in real cameras where light from
very bright areas bleed over to other areas that are not lit up as
much. We have recreated this effect by giving extra light to pixels
neighboring areas with high light intensity. The algorithm starts by
sampling pixels in an area around the current pixel. For each of
those samples with intensity higher than a threshold we add extra
intensity to the current pixel. We weight the light from the outer-
most samples higher because it gave the best result. [Policarpo
et al. 2005]

2.2 Depth of field

Depth of field is an effect that is created both in our eyes and in
a camera. Its an effect that appears naturally to us as it helps give
us a better sense of depth and makes it easier to focus on certain
areas. In movies and photography this effect is also used to point
the viewer’s attention at a certain place. This also occurs naturally
as the camera in this sense works in the same way as the eye with a
lens focusing the light. For computer graphics, this sense of depth
does not exist as we have a flat screen and the images come from
a virtual world. The implementation of this effect is made in our
post process shader. The implementation is an approximation on
how the real eye works. When a point is out of focus, instead of
being projected onto one single point, it will instead be projected to
several points on the screen, creating a blur at areas that are out of
focus. To decide how big an area that is to be blurred, we calculate
the distance between our adjustable focal plane and the depth in our
depth buffer as

abs(FocusPoint−depthcp)

where cp is the current pixel in the fragment shader. This value
determines how big area we will blur the point with. Then the pixel

is blurred by looking at nearby pixels quadratically. For each of
those pixels that have less depth than the current pixel we mix it
with the current pixel as

mix(colorBu f f ercp,colorBu f f ernp,abs(FocusPoint−depthnp))

where np is the nearby pixel that we are currently blending with,
and colorBuffer is the already rendered scene. Here we use the
surrounding pixels when we mix to better approximate that those
pixels blur out over the current pixel. [Derners 2010]

2.3 SSAO

In real time computer graphics light must be approximately calcu-
lated. One of the terms often used for this approximation is the
ambient term, this term is just a small constant of light that is added
to represent the small amount of light scattered to areas that are not
directly lit by light sources. This is a very flat approximation of
those areas. The screen space ambient occlusion is a better algo-
rithm that takes into account how the close surrounding of the point
looks. This is done by taking random sampling points in a sphere
around the current pixel in the fragment shader. For each of those
sampling points we compare the depth of the random point with the
corresponding depth from the depth buffer. If the value in the depth
buffer is lower than the depth in the sampling point, it means that
the point is hidden behind an object. In this case we make the am-
bient factor lower to represent that this area is more hidden and less
light scatters to it. [Doggett and Akenine-Mller 2010]

2.4 Fur

The fur effect as originally described by Lengyel et al uses both
shells and fins to display good looking fur in real time over arbitrary
surfaces, but only the shells were implemented here. The method
of shells works by discretizing the hair at different lengths of the
strands, and then drawing all of these shells on top of each other.
This gives a great effect on surfaces that are parallel to the image
plane, but surfaces that are facing away usually look very bad due to
most of the shells being invisible here. This problem could be alle-
viated by rendering fins that are extruding perpendicularly from the
surface they are drawn on, but since all of the work in this imple-
mentation of fur is being done in the vertex and fragment shaders,
this was not suitable. This makes it impossible to render good fur
on simple geometric objects with sharp angles such as tetras or even
cubes, but it looks good enough on rounder objects such as balls or
torii.

The main loop of the application only needs to make sure that
the object is being rendered several times, once for each shell layer,
and send information to the shaders about the current layer. The
vertex shader then continues by moving the vertices in the normal
direction so that the object is enlarged, and then the fragment shader
does the rest of the work.

The fragment shader first uses the texture coordinates to pro-
duce pseudo-random numbers that are constant on small areas of
the object. Rendering this in greyscale gives the object a checkered
pattern on the surface. Each small square is then used to approxi-
mate a strand of hair. The good thing about this approach is that the



Figure 1: Scene with 8 light sources without bloom effect

thickness of the hair can be altered in real time by modifying the
random number generator, but the ugly backside is that the strands
are rendered with a square cross section, and that the distance be-
tween the hairs is fixed. In a more advanced application one should
instead render the hairs realistically in a preproceesing stage and
then create these shell textures to look more natural.

Since each strand of hair gets a unique number associated to it,
they can all have a bit different characteristics. For example they
can have different length, or not be drawn at all if the number lies
outside a given interval to create more sparse fur. The strands that
won’t be rendered are given an alpha value of 0.0 so they are see-
through. Each strand gets its color from the skin, which is the ge-
ometric shape rendered with a texture as usual. The brightness of
this color is modulated a little for each strand so that strands on a
skin with a constant color can be separated, and ambient occlusion
is approximated by making the innermost layers darker than the tip
layers.

The hair strands should realistically get a smaller cross-section
when nearing the tips, but since the shells are created in real time
this is not possible using the pseudo-random number like this. In-
stead this is modeled by decreasing the alpha value of the shells the
farther away from the skin they are rendered. [Lengyel et al. 2001]

3 Results

The results of the bloom, depth of field and SSAO shaders will be
shown in the Sponza scene with spotlights as light sources and a
base of shaders consisting of Phong shading, angular falloff, dis-
tance falloff and shadow mapping. As many different shaders have
been implemented, displaying the results will need many images,
and therefore different choices of parameter settings or different
models of the same shader will not be shown. Those elements will
instead be discussed in the discussion part of this paper. The fur
shader was not implemented in the Sponza scene, but only on a
torus shape.

3.1 Bloom

As we have angular falloff and distance falloff, we will not get any
bright lights in our scene that are contrasting with areas with no
lighting, instead we will have more smooth light transitions. This
will result in a high intensity threshold not giving very interesting
results near the edges of the light cone. We therefore display the
bloom effect with a very low threshold to make the bloom effect
appear over the whole light cone, and also it looks cool.

Figure 2: Same scene as in figure 1 with bloom effect

Figure 3: Scene with 8 lights and no depth of field

3.2 Depth of field

For our depth of field effect we have chosen to show the result with
a foreground object that is much closer to the camera then the rest
of the scene. If the scene would have been depicted by a real camera
or with our eyes the background would be blurred if the focal plane
was close to the lins. In the image its easy to see that our method
recreates this effect.

3.3 SSAO

The SSAO effect replaces the normal ambient factor of approxima-
tion of the rendering equation. There for we compare our SSAO
with the normal ambient term. The results clearly show that the
SSAO gives a much more dynamic ambient term. The SSAO makes
it much easier to actually see the shapes and depths of objects in ar-
eas not directly lit by any light.

Figure 4: Same scene as in figure 3 with depth of field



Figure 5: Scene with no lights

Figure 6: Same scene as in figure 5 with SSAO

3.4 Fur

The fur shader gives a good appearance of fur on objects in real
time. With the right parameters the effect looks quite good despite
its drawbacks.

4 Discussion

4.1 Bloom

In the bloom shader we used a model that gives a big effect on
our lightsources. In other cases you may want only very intense
light sources to bleed over. Like sunlight coming in from a window
bleeding out on the window frame. This can be done with a higher
threshold value for how high intensity that is needed for an area
to blend over. Another thing that could have been done differently
is the way we blend. With our current algorithm we blend more

Figure 7: Fur effect with long, uncombed hair

Figure 8: Fur effect with short, combed strands of hair

light into the area from the pixel far away in the quadratic area we
are blending in. We made it this way as it gave us a better final
result. But it would probably in other situations give a better effect
the other way around, especially with higher threshold (we have not
tested those situations).

4.2 Depth of field

The depth of field effect works pretty good, especially when the fo-
cus plane is close to the camera. Due to the non-linear depth buffer,
the in focus depth becomes larger far away from the camera and
the effect does not work too good. This could be fixed by spending
more time tweaking parameters and calculating more on the depth.
Our approximation of the effect is done by setting the focus to a fix
value and adjusting the blur only from this parameter. The effect
could have been more physically correct by implementing a model
of a physical camera with physical parameters.

4.3 SSAO

Our SSAO is implemented with random points in a sphere. A half
sphere with the z-axis in the direction of the surface normal would
probably give a better effect since planar areas such as walls should
have no occlusion. The noise that is unevitable with the random
generation algorithm could also be blurred for a more smooth ef-
fect.

4.4 Fur

The fur shader would look better if the fins from the original paper
were actually implemented. Different lighting effects could have
been used to make it look more realistic, and the fur could also
be animated. Growing the hair in preprocessing and saving it in
textures could have made the effect more realistic as well as faster,
but we wouldn’t be able to tweak the thickness and density in real
time.

References

DERNERS, J., 2010. Chapter 23. Depth of Field: A Survey
of Techniques. http://http.developer.nvidia.com/GPUGems/

gpugems_ch23.html, Dec.

DOGGETT, M., AND AKENINE-MLLER, T., 2010. Procedural
Shading. http://fileadmin.cs.lth.se/cs/Education/EDAN35/
lectures/L4-proc-shaders.pdf, Dec.

LENGYEL, J., PRAUN, E., FINKELSTEIN, A., AND HOPPE, H. 2001.
Real-time fur over arbitrary surfaces. In Proceedings of the 2001 sympo-
sium on Interactive 3D graphics, ACM, 227–232.



POLICARPO, F., FONSECA, F., AND GAMES, C., 2005. Deferred Shading
Tutorial.


