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Abstract
The effectiveness of texture mapping in enhancing the realism

of computer generated imagery has made support for real-time tex-
ture mapping a critical part of graphics pipelines. Despite a recent
surge in interest in three-dimensional graphics from computer
architects, high-quality high-speed texture mapping has so far been
confined to costly hardware systems that use brute-force tech-
niques to achieve high performance. One obstacle faced by design-
ers of texture mapping systems is the requirement of extremely
high bandwidth to texture memory. High bandwidth is necessary
since there are typically tens to hundreds of millions of accesses to
texture memory per second. In addition, to achieve the high clock
rates required in graphics pipelines, low-latency access to texture
memory is needed. In this paper, we propose the use of texture
image caches to alleviate the above bottlenecks, and evaluate vari-
ous tradeoffs that arise in such designs.

We find that the factors important to cache behavior are (i) the
representation of texture images in memory, (ii) the rasterization
order on screen and (iii) the cache organization. Through a detailed
investigation of these issues, we explore the best way to exploit
locality of reference and determine whether this technique is
robust with respect to different scenes and different amounts of
texture. Overall, we observe that there is a significant amount of
temporal and spatial locality and that the working set sizes are rel-
atively small (at most 16KB) across all cases that we studied. Con-
sequently, the memory bandwidth requirements of a texture cache
system are substantially lower (at least three times and as much as
fifteen times) than the memory bandwidth requirements of a sys-
tem which achieves equivalent performance but does not utilize a
cache. These results are very encouraging and indicate that cach-
ing is a promising approach to designing memory systems for tex-
ture mapping.

1    Introduction
Computer graphics is becoming an increasingly important appli-

cation. Consequently, there has been much interest from designers
of general-purpose microprocessors, media processors, and spe-
cialized hardware to provide cost-effective real-time computer
graphics capabilities. Examples of recent developments in this area
are the Visual Instruction Set (VIS) in UltraSPARCTM [16] and
FBRAM [18] from Sun Microsystems, MMXTM Technology [19]
and Accelerated Graphics Port (AGP) [1] from Intel Corporation,
Magic Carpet [12] from MIPS Technologies, and Talisman [13]
from Microsoft Corporation. In this paper, we focus on one chal-
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lenging aspect of graphics architecture, the design of a memory
system for texture mapping.

The mapping of images onto the surfaces of three-dimensional
objects is known as texture mapping. Texture mapping has earned
the role of a fundamental drawing primitive for its ability to sub-
stantially enhance the realism and visual complexity of computer-
generated imagery [23, 22]. Examples of this technique include the
mapping of a 2D color image of a wooden texture to the surface of
a guitar, a road image to a highway, or a grassy plot image to a
mountain. In addition to the mapping of surface color [5], texture
mapping has been used for mapping a myriad of other surface
parameters including reflection of the environment [21], bumps
[9], transparency [7], and shadows [20, 25].

One characteristic of texture mapping is that texture images
often require large amounts of memory (typically in the range of a
few megabytes to tens of megabytes). The amount of memory is
dependent upon the number of textures in a scene and the size of
each texture. It is generally accepted that the usefulness of texture
mapping hardware increases with the amount of memory dedi-
cated for textures. Another characteristic of texture mapping is that
it requires many calculations and texture lookups. This characteris-
tic causes it to be the main performance bottleneck in graphics
pipelines. For each screen pixel (fragment) that is textured, the cal-
culations consist of generating texture addresses, filtering multiple
texture samples to avoid aliasing artifacts, and modulating the tex-
ture color with the pixel color. (Throughout this paper we will use
the terms fragment and screen pixel interchangeably.) Since the
number of fragments that are textured can be quite large (typically
tens to hundreds of millions per second), and each textured frag-
ment requires multiple texture lookups (usually 8), the memory
bandwidth requirements to texture memory can be very large (typ-
ically several gigabytes per second). In addition, to achieve the
high clock rates required in graphics pipelines, low-latency access
to texture memory is needed.

The Silicon Graphics’ RealityEngine [14] is an example of a
high-end parallel graphics architecture that can support real-time
texture mapping. This system uses multiple engines (also called
fragment generators) for texture mapping fragments. Each engine
has an 8-way banked DRAM memory system that is dedicated for
textures (total 16 MB), and can perform eight independent texture
lookups in parallel. Since there are multiple fragment generators
(between 5 and 20) and each one has its own dedicated memory,
the texture images must be replicated in each memory. One prob-
lem with this architecture is that an application running on a 20
fragment generator system is limited to 16 MB of unique memory
for textures even though there is a total of 320 MB of texture mem-
ory in the system. Therefore, the domain of applications that can
utilize the texture mapping hardware is constrained by the limited
amount of unique memory.

An alternative approach for providing fast texture accesses and
high bandwidths is to use an SRAM cache with each fragment
generator instead of a dedicated DRAM memory. The premise of
this idea is that there is a substantial amount of locality of refer-
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ence in texture mapped scenes. Thus, the cache size can be rela-
tively small compared to a dedicated memory. The cache would be
backed by a shared pool of DRAM. One advantage of this solution
is that there is no need for texture replication for each fragment
generator and the amount of unique memory for textures can be
much larger. Another advantage is that the lower cost of a small
cache compared to a much larger dedicated memory makes this
architecture more scalable. A final advantage is that the latency of
access to texture memory can be much lower and the access band-
width can be substantially higher due to the use of SRAM.

In this paper, we focus on a system that uses a single fragment
generator and study the implications of a texture cache on memory
bandwidth and rendering performance. Particularly important to
the cache behavior are the representation of textures in memory,
the rasterization order on screen and the cache organization.
Through a detailed investigation of these three issues, we explore
the best way to exploit temporal and spatial locality and determine
whether this technique is robust with respect to different scenes
and different amounts of texture. It is interesting to note that cur-
rent graphics pipelines do not use caches for texture mapping and
no serious evaluations have been published. Our simulation indi-
cates that there is a significant amount of temporal and spatial
locality and that the working set sizes are relatively small (at most
16KB) across all cases that we studied. As a result, we find that
even small caches of 32KB can offer substantial cost/performance
benefits. With respect to the representation of textures in memory,
we find that a blocked representation is required to fully exploit
spatial locality and to avoid any dependency on the orientation of
textures as they appear on the screen. When the texture images are
large, the image arrays must be either padded or blocked at a
coarser level to avoid conflicts between texture blocks. Finally, we
find that a tiled rasterization order is useful for reducing the work-
ing set size and for avoiding conflicts between texture blocks.

The remainder of the paper is structured as follows. The next
section provides background information on texture mapping. The
motivation for a texture cache and its potential benefits are
described in Section 3. Section 4 explains our experimental meth-
odology and describes the benchmarks used in the study. Section 5
introduces two representations of textures in memory and evalu-
ates their miss rate characteristics and interactions with the cache
organization. Section 6 introduces tiled rasterization and evaluates
its effect on working set size and conflict misses. Section 7 relates
the miss rate results from Section 5 and Section 6 to memory band-
width and rendering performance. Finally, Section 8 summarizes
the results and presents conclusions.

2    Background
To understand where texture mapping fits in a real-time render-

ing system, we briefly describe the four major functions of a tradi-
tional graphics pipeline [11]: geometry processing, fragment
generation, hidden surface removal, and framebuffer display. The
3D geometries of scenes are commonly defined in terms of trian-

FIGURE 2.1. Block diagram of texture mapping hardware.
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gles. In the first stage, matrix transformations are applied to the tri-
angle vertices, resulting in a perspective mapping of the triangles
to the 2D display. The second stage is fragment generation consist-
ing of rasterization, shading, and texture mapping of fragments.
The third stage is hidden surface removal, accomplished using a z-
buffer algorithm and the final stage is the display of the rendered
image stored in the framebuffer.

Of the four stages in a graphics pipeline, we are primarily inter-
ested in the second stage. A block diagram of the second stage is
shown in Figure 2.1. The fragment generator is responsible for ras-
terizing the input triangles into fragments and performing the
shading and texture mapping calculations. Rasterization involves
interpolating screen coordinates, depth, texture coordinates and
shading color across the surface of each triangle, and identifying
the screen pixels (also called fragments) that lie inside the trian-
gles. The color applied to the fragments is usually a function of
both the shading and texture mapping calculations. Before we can
describe how the fragments are texture mapped, we must first dis-
cuss the concept of Mip Mapping.

The goal of Mip Mapping, introduced by Williams [15], is to
efficiently avoid aliasing artifacts by quickly filtering the texture
image. It involves representing a texture as an image pyramid as
illustrated in Figure 2.2. The bottommost level of the pyramid is
the original texture image and each subsequent level is a filtered
and down-sampled version of the previous level. Consider an
example in which a texture mapped triangle is being viewed from
far away, so that there is low resolution of image details. In this
case, an area of texture can be represented by one screen pixel.
Instead of re-filtering the image based on the level-of-detail
required, we can use the pre-computed image from the appropriate
level of the Mip Map. Each level of the Mip Map corresponds to a
particular screen pixel to texture pixel ratio, where a screen pixel
refers to the pixel on the screen itself and texture pixel, or texel,
refers to the pixel in the texture image being depicted on the
screen.

When applying texture, we compute the texture coordinates
(u,v) and the screen pixel to texel ratio d. In practice, the u,v, and d
coordinates do not exactly map to a single texel. Consequently, we
must take the weighted average of the eight texels closest to the
(u,v,d) coordinates, four texels each from the two levels whose d
values most closely approximate the desired d value. This is
known as trilinear interpolation. A special case arises if the screen
pixel to texel ratio is less than one. This occurs when a texture
mapped triangle is being viewed from very close and causes the
original texture image to be magnified. In this case, we take the
weighted average of the four texels closest to the (u,v) coordinates
in the bottommost level of the image pyramid. This is known as
bilinear interpolation. The result of the trilinear or bilinear interpo-
lation is usually modulated with the color computed from the shad-
ing calculations to obtain the final color for the textured fragment.

In summary, the fragment generator is responsible for rasteriz-

FIGURE 2.2. Illustration of a Mip Map. Eight texels (shaded)
from two adjacent levels of the pyramid are used in a Trilinear
Interpolation.
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ing triangles into fragments, computing level-of-detail and Mip
Map texture addresses for each fragment, filtering the texels that
are accessed using either trilinear or bilinear interpolation, and
finally applying the texture color to the fragments. Typical unopti-
mized computational costs for each of the operations of a fragment
generator are shown in Table 2.1. Since these costs are quite high,
fragment generators often exploit deep pipelining and parallel-
ism. In fact, most of the costs are incurred by texture mapping.

3    Texture Cache: Motivation and Benefits
In this section, we identify the types of locality of reference that

are present in texture accesses and discuss the benefits of adding
an SRAM texture cache between the fragment generator and
DRAM texture memory.

3.1  Locality of Reference in Texture Mapping
The effectiveness of a memory hierarchy depends on locality of

reference in data accesses. Both spatial and temporal locality are
present in texture mapping.

3.1.1  Spatial Locality
The representation of textures as Mip Maps contributes to spa-

tial locality in texture accesses. The Mip Map accesses have a high
degree of spatial locality since the level of the map is selected to
closely match the level-of-detail that is being drawn on the screen.
In essence, this means that movements of one pixel in screen space
roughly correspond to movements of one texel in texture space,
hence the spatial locality in texture space. The spatial locality in
Mip Map accesses is thus present irrespective of the scene.

3.1.2  Temporal Locality
Temporal locality in accesses to texture data is present when

rendering a single frame and between consecutive frames. We gen-
erally do not expect our caches to exploit temporal locality
between consecutive frames because the cache sizes that we con-
sider are much smaller than the amount of texture data that is typi-
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TABLE 2.1. Computational costs of the operations of a
fragment generator. Apart from triangle setup, all the costs
are on a per fragment basis.

cally used by a single frame. Between memory and disk, however,
this kind of temporal locality is of interest. Within a single frame,
two types of temporal locality are present: locality arising from
overlap of accesses needed for filtering between neighboring frag-
ments and locality arising from repeated texture. Below, we dis-
cuss each of these two types of temporal locality in more detail.
Overlap of Accesses between Neighboring Fragments

Temporal locality is present between the texel accesses of neigh-
boring fragments. Since each textured fragment must access multi-
ple texels for trilinear or bilinear interpolation, it is expected that
some of these accesses will overlap with the texel accesses of
neighboring fragments. We measured the average number of
accesses per texel made by a spatially contiguous group of frag-
ments across all four benchmark scenes, which are described in
Section 4. The results for trilinear interpolation (lower level), tri-
linear interpolation (upper level) and bilinear interpolation are 4,
14 and 18, respectively. For trilinear interpolation, we distinguish
between texel accesses that are to the more detailed level, lower
level, and the less detailed level, upper level, of the two adjacent
levels of the Mip Map that are used in the interpolation. These
results clearly show that the texels in the upper level of a trilinear
interpolation are accessed a larger number of times than the texels
in the lower level. Since the lower level is more detailed than the
upper level, it is traversed more rapidly and this leads to fewer
accesses per texel. In general, we expect texels in the lower level
of a trilinear interpolation to be accessed an average of four times
and the texels in the upper level to be accessed an average of six-
teen times. For bilinear interpolation, the number of accesses per
texel is directly related to the amount of texture magnification and
this can vary widely depending on the scene.
Repeated Texture

Temporal locality is also present when a texture is repeated
across the surface of an object. An example application is a wall
that is textured by repeating a 2D texture image of an individual
brick. Since the amount of repetition is a function of the texture
coordinates defined in the high-level geometric description of the
scene, this type of temporal locality is very scene dependent. We
measured the average number of times a texel is repeated in the
benchmark scenes. The results for the Town, Guitar, Goblet and
Flight scenes are 2.9, 1.7, 1.1 and 1.0 times, respectively.

3.2  Texture Cache Benefits
The evolution of DRAM technology motivates the use of an

SRAM texture cache. The rapid growth in DRAM density has
meant that fewer DRAM chips are needed to construct a memory
of a fixed size. The use of higher density memory chips has led to a
decline in bandwidth per Megabyte of memory [24]. An SRAM
texture cache can exploit locality of reference to hide most of the
texture accesses from reaching memory, thus lowering the band-
width requirements.

Another reason for adding an SRAM cache is that block trans-
fers of cache lines between the cache and memory make it possible
to get the most bandwidth out of the memory. Present-day DRAM
architectures are optimized for long burst transfers to microproces-
sor caches since this amortizes the setup costs of the transfer over
many bytes and leads to the most efficient memory bus utilization.

A third reason for having an SRAM texture cache is that static
memories typically have shorter access latencies than dynamic
memories. The SRAM cache can be tightly coupled with the frag-
ment generator which makes it possible to run the fragment gener-
ator at higher clock rates. This is an incentive for integrating the
SRAM cache onto the same chip as the fragment generator.

Finally, a recent trend in computer graphics has been the use of
rendered images as textures [3]. As a result, it has become desir-
able to unify the framebuffer and texture memories to avoid copy-
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ing data between the two. A fragment generator connected to an
SRAM texture cache does not necessarily require a dedicated tex-
ture memory. This makes it possible to fetch the texture data as it is
needed from whichever DRAM buffer it is stored in. In fact, multi-
ple fragment generators can share the same DRAM memory sys-
tem and no cache coherence is needed since the texture data is
mostly read-only. The caches can be flushed if necessary when the
textures change.

The organization of the texture cache is characterized by three
parameters: cache size, line size and associativity. The choice of
cache size is related to the working set sizes of texture mapped
scenes. The line size depends on the amount of spatial locality that
can be exploited. As noted earlier, larger line sizes can elicit a
larger fraction of the peak memory bandwidth. Finally, the cache
associativity is related to the kinds of conflicts that can occur.

4    Methodology
Doing performance studies for graphics architectures is a diffi-

cult endeavour. The primary reasons are the lack of well-estab-
lished benchmark programs and the lack of tools for obtaining
traces of graphics commands. In this section, we discuss how we
address these and additional issues.

4.1  Simulation Environment
The simulation environment consists of three components. The

first component is a software implementation of a three-dimen-
sional polygonal graphics pipeline. This is responsible for geome-
try, clipping, lighting of vertices, rasterization, shading, texture
mapping and finally Z-buffering. The pipeline is similar to the one
described in [14]. Specifically, the texture mapping implementa-
tion is based on the OpenGL specification document [17]. Since
the pipeline is implemented in software, we can easily experiment
with different representations of texture in memory and can raster-
ize the triangles in either the horizontal or vertical direction. The
textures are assigned memory using the malloc() system call and
we allocate 32 bits per texel. The triangles are rasterized in the
same order that they are specified in the input.

The second component is a capability to trace the GL calls that
are made by a graphics application while it is running in real-time
on a hardware-based renderer. This was done using a standard util-
ity program called gldebug, intended for debugging GL programs,
and a parser that parses the GL calls while the application is run-
ning. This technique can be applied to any binary executable that
makes GL calls. The trace is then fed to our software implementa-
tion of the graphics pipeline which executes equivalent procedures
and generates images as output. The images allow us to verify that
the interpretation of the trace is accurate.

The third component is a trace-driven cache simulator that can
model different cache sizes, line sizes and associativities. When-
ever the software-based fragment generator accesses a texel from
memory, it also makes a call to the cache simulator passing the
address of the texel as a parameter. The cache simulator runs con-
currently with the graphics pipeline.

Scene
Image

Resolution
(Pixels)

Number
of

Triangles

Average
Triangle

Area
(Pixels)

Average
Triangle
Width

(Pixels)

Average
Triangle
Height
(Pixels)

Number
of

Textures

Texture
Storage
(MB)

Texture
Used
(MB)

Texture
Used
(%)

Pixels
Textured
(millions)

Flight 1280x1024 9152 294 38 20 15 56 6.3   11%  1.4
Town 1280x1024 5317 1149 67 23 51 4.7 1.8   38%   2.1
Guitar 800x800 719 1867 72 94 8 4.9 1.1   23%   0.7
Goblet 800x800 7200 41 25 14 1 1.4 0.78   56%   0.3

TABLE 4.1. Texture Mapping Benchmarks.

4.2  Benchmarks
We study four benchmarks that are applications of color texture

mapping. The characteristics of these benchmarks are summarized
in Table 4.1. Because the cache sizes that we consider are much
smaller than the amount of texture used in each benchmark, we do
not expect to exploit temporal locality between consecutive
frames. For this reason, we have selected a single frame per bench-
mark.

The first two benchmarks, shown in Figure 4.1 and Figure 4.2,
are taken from the Silicon Graphics Reality Engine Demo Suite
and are representative of present-day applications of texture map-
ping. The Flight scene, shown in Figure 4.1, uses several
1024x1024 pixel satellite images as textures and maps these tex-
tures onto a geometric model of the terrain. An important charac-
teristic of the Flight scene is that it has large variations in level-of-
detail as a result of the mountainous terrain. In comparison, the
Town scene, shown in Figure 4.2, maps many smaller textures
onto flat surfaces and these textures appear upright in the image of
the scene. The Guitar scene, shown in Figure 4.3, is another appli-
cation where textures are mapped onto flat surfaces. It differs from
the Town scene in that the textures are larger and they do not
appear uniformly oriented in the image of the scene. Finally, the
fourth benchmark, shown in Figure 4.4, consists of a single texture
wrapped around a goblet. The Goblet benchmark is characterized
by its use of small triangles to make up the curved surface and by
the variations in level-of-detail that occur when the surface
becomes 90 degrees to the viewing angle. In all four benchmarks,
the textures are stored as Mip Maps and trilinear interpolation is
used for filtering the images.

5    Representation of Texture Maps in
Memory

The representation of texture maps in memory is important to
the cache behavior because it effects where texture data is placed
in the cache. In this section, we study the interaction between the
texture representation and the parameters of the cache organiza-
tion. We examine two representations: a Nonblocked representa-
tion and a Blocked representation.

5.1  Previous Work
In [15], Williams also described a clever memory organization

and addressing scheme for two-dimensional textures which is
illustrated in Figure 5.1(a). At each level of the pyramid, the image
is separated into its red, green, and blue color components. The fil-
tered and down-sampled levels of the pyramid are stored above
and to the left of their predecessor levels. Once the u, v, and d
coordinates are calculated, indexing the Mip Map is a simple mat-
ter that involves binary operations since the individual images are
sampled at powers of two.

Although this representation makes addressing very inexpen-
sive, it is prone to several problems from a caching perspective.
The most serious problem is that the individual color components
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of a texel are always separated by powers of two bytes in memory
since the texture image dimensions are powers of two. (Note that
in most graphics libraries including OpenGL, the texture image
dimensions are either restricted to be powers of two or the images
are padded so that the dimensions are powers of two.) Thus, it is
very likely that the individual color components will map to the
same line in the cache resulting in conflicts. Another problem is
that the representation does not exploit spatial locality that would
be present if the color components were stored contiguously in the
same cache line. Finally, since the image is separated by compo-
nent, reading a texel from the cache requires three separate
accesses with tag comparisons for each access.

5.2  Base Nonblocked Representation
An alternative representation is illustrated in Figure 5.1(b). In

this representation, the red, green, blue and alpha components are
stored contiguously. Each level of the pyramid is represented by its
own two-dimensional array and each array is stored in row-major
order. We will consider this representation as the base representa-
tion for the remainder of this paper since it is not prone to the prob-
lems mentioned previously.

5.2.1  Texel Addressing
The main advantage of the base representation is that it requires

the fewest number of addressing calculations. The addressing cal-
culations, shown below, assume that the dimensions of the texture
arrays are powers of two. The texel addressing calculations must
be performed eight times per fragment since a trilinear interpola-
tion requires eight texture samples.

All variables are a function of the Mip Map level.
tu, tv: texel u- and v-coordinates
base: starting address of 2D texture array
lw: log2(width of 2D texture array in pixels)

Texel address = base + (tv << lw) + tu

5.2.2  Cold Misses
Cold misses cannot be avoided and so they represent the lower

bound for miss rates in the cache. Figure 5.2 shows graphs of miss
rate versus cache size measured for fully associative caches with
an LRU replacement policy. These graphs assume a line size of 32
bytes and fully associative caches so that we can ignore conflict
misses. We study the effect of line size on cold misses and defer
the discussion of conflict misses to Section 5.3.3.

Cold misses typically occur in two places: along triangle edges
where the textures are first accessed, and in the interior of large tri-
angles when the texture accesses cross cache line boundaries. The
cold miss rates can be deduced from the miss rates for the large
caches since they do not include capacity misses. (Note that the
cold miss rates are the same regardless of whether rasterization is
horizontal or vertical; we discuss the effect of rasterization direc-
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FIGURE 5.1. (a) Mip Map representation proposed by Will-
iams. (b) Base nonblocked representation.

tion on working set size in Section 5.2.3). The cold miss rates for
the Town, Guitar, Goblet and Flight scenes are 0.55%, 0.87%,
1.5%, and 2.8% respectively. These miss rates are quite low con-
sidering that the line size of 32 bytes holds just eight texels.

One factor that contributes to differences in cold miss rate is the
amount of temporal locality in the form of repeated texture. As
previously noted in Section 3.1.2, the amount of repetition of tex-
tures is very scene dependent. Another factor is the frequency of
changes in level-of-detail across the surfaces that are textured. In
the Town and Guitar scenes, the surfaces are predominantly flat
causing the variations in level-of-detail to be gradual. As a result,
we find that a large fraction of each line of texture data that is
fetched into the cache is used. In comparison, the mountainous ter-
rain in the Flight scene causes frequent changes in level-of-detail.
Consequently, the accesses are fragmented across different levels
of the Mip Map and a smaller fraction of each line of texture data
that is fetched into the cache is used. Since more lines are needed
for texturing, the cold miss rates are higher.

We also measured the cold miss rates for caches with a larger
128 byte line size. The results for the Town, Guitar, Goblet and
Flight scenes are 0.15%, 0.25%, 0.42%, and 1.1% respectively. We
see that the cold miss rates are much reduced with increasing line
size, indicating the presence of substantial spatial locality.

5.2.3  Working Set Size
The working set size is a measure of the amount of data that is

actively in use at a particular time. Most applications have a hierar-
chy of working sets [6]. In a graph of miss rate versus cache size,
the different levels of the working set hierarchy can be seen as pla-
teaus followed by sharp reductions in miss rate at particular cache
sizes.

One can consider the coarsest level of the working set hierarchy
in texture mapping to consist of all the texture data required to ren-
der an image. The Principle of Texture Thrift [4] defines the mini-
mum amount of data required to render an image:
Given a scene consisting of textured 3D surfaces, the amount of
texture information minimally required to render an image of the
scene is proportional to the resolution of the image and is indepen-
dent of the number of surfaces and the size of the textures.
This principle is a consequence of the fact that each pixel of the
image can represent at most one filtered sample of texture. The
advantage of representing textures in the form of Mip Maps is that
the amount of data used in filtering for each pixel is fixed regard-
less of the level-of-detail.

We are interested in understanding the makeup of the first sig-
nificant working set because it corresponds to the smallest cache
size that one would consider using for caching texture images. We
are also interested in making a worst-case estimate of the size of
the first significant working set to generalize our analysis beyond
the benchmarks that we study. We define the first significant work-
ing set as the first level of the working set hierarchy and begin by
noting that a triangle is rasterized one scan line at a time, where a
scan line consists of either a horizontal or vertical span of pixels in
screen space. We assume for our worst-case analysis that the trian-
gle being rasterized is large and spans the entire area of the screen.
We have shown that there is spatial and temporal locality in the
accesses to texture data, especially by accesses from adjacent scan
lines. A cache that is large enough to hold the texture data needed
for an entire scan line can exploit such localities of reference to
significantly reduce miss rates. Thus, we see that the first level
working set consists of the texture data needed for an entire scan
line, and a significant reduction in miss rate occurs when the cache
is large enough to hold this working set. Two parameters that can
place a bound on the worst-case working set size are the texture
image size and the screen size. If the texture image size is less than
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the screen size, the texture is wrapped around and repeated. In this
case, the worst case working set size is bounded by the cache line
size multiplied by the length of the diagonal of the texture image,
since this is the maximum length through the texture and the tex-
ture can appear in an arbitrary orientation on the screen. On the
other hand, if the texture image size is greater than the screen size,
the worst case working set size is bounded by the cache line size
multiplied by the maximum width or height of the screen, depend-
ing upon whether we rasterize horizontally or vertically1.

We have measured the average runlength of texel accesses from
the same texture. The results for the Town, Guitar and Flight
scenes, which are applications of more than one texture, are
223,629, 553,745 and 562,154, respectively. An underlying
assumption is that the triangles are processed in the same order
that they are specified in the high-level geometric description of
the scene. These long runlengths demonstrate that the working set
is limited to one texture at any point in time.

When rendering a span of pixels in screen space, texels (texture
pixels) may be traversed in arbitrary orientations on the screen. In
the worst case, the texture accesses can be streaming vertically
through the texture causing only a fraction of each cache line that
is brought into the cache to be actively used. The net effect is that
the working set size is larger than it needs to be. This is a short-
coming of the base representation that we have chosen.

Figure 5.2(a) shows the miss rate results versus cache size when
the scenes are rasterized horizontally. The first level working set
sizes for the Flight, Town, Guitar and Goblet scenes are 4KB,
8KB, 16KB, and 16KB respectively. These working set sizes are a
very small fraction of the total amount of texture that is used to
render each scene (please see Table 4.1 for the full texture content
used) and indicate that texture caching can be effective with rela-
tively small cache sizes.

Figure 5.2(b) shows the miss rates versus cache size when the
scenes are rasterized vertically. Compared to Figure 5.2(a), the
miss rates for the Town scene have substantially increased for
small cache sizes, whereas the miss rates for the other scenes have
not changed quite as much. The first level working set size for the
Town scene has grown from 8KB to 16KB because of a mismatch
between the base representation and the rasterization direction. In
fact, since most of the textures appear upright in the image of the
Town scene, vertical rasterization causes the direction in which the
texels are accessed to be perpendicular to the direction in which
1. The screen rasterization path that would lead to the smallest working set
would follow a Peano-Hilbert order since this would traverse a region of
the texture in a spatially contiguous manner.
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FIGURE 5.2. Results for the base representation using fully associative caches. The line size is 32 bytes (8 texels).
(a) Horizontal rasterization (row major order). (b) Vertical rasterization (column major order).

the texels are stored leading to worst-case behavior. In the Flight
scene, the effect is less pronounced because the triangles are mod-
erately sized. The Goblet scene results do not change because the
triangles are relatively small. The results for the Guitar scene do
not change very much because the textures in this scene are not
uniformly oriented in any particular direction. From an architec-
tural perspective, the important point is that the base representation
is sensitive to the direction of texture accesses. For the remainder
of this paper, we report results using vertical rasterization for the
Town scene since this leads to worst-case behavior, and report
results using horizontal rasterization for the Flight, Guitar and
Goblet scenes.

In summary, we have shown that the cold miss rates are very
low and can be further reduced with larger line sizes. The long tex-
ture runlengths, measured with the same rendering sequence as
that taken by actual hardware engines that do texture mapping,
indicate that the working set is limited to one texture. In addition,
the working set sizes are very small compared with the amount of
texture that is used to render each scene, justifying the use of rela-
tively small texture caches. Finally, we found that the base repre-
sentation is sensitive to the orientation of textures on the screen.

5.3  Blocked Representation
A blocked representation can be used to reduce the dependency

on the orientation of textures, as seen by the viewer, and to exploit
more spatial locality. A blocked representation of a 5-level Mip
Map is illustrated in Figure 5.3. In this representation, also com-
monly known as Tiled, texels that are within a square region
(block) of a two-dimensional image are ordered consecutively in
memory. The idea of texture blocking is previously discussed in
[4] and [10]. There are several issues that are raised by this repre-
sentation. First, what is the addressing overhead associated with
blocking? Second, how do we select the block size and is it related
to the cache line size? Third, what are the improvements in miss
rate as we increase the cache line size? Finally, what is the effect of
blocking on conflict misses? In the following subsections, we dis-
cuss each of these issues in turn.

5.3.1  Texel Addressing Overhead
The blocked representation converts two-dimensional texture

arrays into four-dimensional arrays. Therefore, the texel address-
ing calculations must be done in a two-step process which is illus-
trated below. We assume that the blocks are square and have
dimensions that are powers of two. Furthermore, we assume that
the blocks have the same dimensions across all Mip Map levels.
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bw, bh: block width and height in texels. These are equal and
are powers of two.

lbw, lbh: log2(bw or bh)
bs: log2(bw * bh)

The following variables are a function of the Mip Map level.
rs: log2(width of texture array in texels * bh)
tu, tv: texel u- and v-coordinates
bx, by: block coordinates
sx, sy: sub-block coordinates in texels
base: starting address of 4D texture array
bx = tu >> lbw
by = tv >> lbh
Block address = base + (by << rs) + (bx << bs)
sx = tu & (bw - 1)
sy = tv & (bh - 1)
Texel address = Block address + (sy << lbw) + sx

The variables bx, by, sx, and sy are simply bit-fields of the u- and
v- texel coordinates, tu and tv. Furthermore, two of the shift opera-
tions shown above, involving the variables bs and lbw, have con-
stant shift amounts assuming that the block dimensions remain
fixed. Hence, the aggregate hardware overhead of the blocked rep-
resentation compared to the base representation simply consists of
two additions. These operations are incurred in the calculation of
the block address.

5.3.2  Selecting a Block Size and Cache Line Size
The next question we would like to answer is whether there is

any interaction between the block size used in the representation
and cache line size. Figure 5.4 shows miss rate versus cache line
size for a variety of block sizes. We chose a 32KB cache for our
measurements because this cache size is larger than the working
set sizes which we noted earlier. The graph in Figure 5.4(a) is for
the Town scene. It shows that the lowest miss rates occur when the
block size most closely matches the cache line size. For example,
the lowest miss rate for a 64 byte cache line is for a 4x4 block
which has a block size of 64 bytes. This effect can be explained by
observing that individual cache lines that hold square regions of
texture are most effective at exploiting spatial locality. When the
block sizes greatly differ from the cache line sizes, we find that the
working set sizes can become unnecessarily large leading to many
capacity misses. The results for the Guitar scene, shown in Figure
5.4(b), are very similar.

We would like to quantify the extent of reduction in miss rate as
the line size is increased. Figure 5.5 shows the effects of line and
block size on miss rate for a fully associative 32KB cache. At
32KB, the primary misses that remain are cold misses and these
misses are independent of the orientation of textures as viewed on
the screen. The miss rates for the Flight, Goblet, Guitar and Town
scenes at a line size of 32 bytes are 2.8%, 1.5%, 1.2% and 0.8%
respectively. The miss rates at a line size of 128 bytes are 0.87%,

Texture Data Blocks

Level    0                               1                2        3   4

FIGURE 5.3. An illustration of the blocked representation for
a texture Mip Map.

0.41%, 0.36% and 0.21%. There appears to be a significant reduc-
tion in miss rate as the line and block sizes are increased.

Thus far, we have presented results for a 32KB cache and we
have found that this cache size is adequate for holding the working
sets of all four scenes. In Figure 5.6, we show results specific to the
Guitar scene for different cache sizes. These graphs demonstrate
that the blocked representation when coupled with larger line and
block sizes, leads to a reduction in the number of capacity misses
for cache sizes that are smaller than the working set size. In Figure
5.4 we saw that increasing the line size alone, without blocking,
leads to worse miss rates. We can conclude that the blocked repre-
sentation is an essential component for reducing the frequency of
capacity misses. We have found that the other benchmark scenes
experience similar reductions in capacity misses (although not
shown here due to space reasons) when the cache sizes are smaller
than the working set sizes.

In summary, we can conclude that the best block size to use for
texturing corresponds to when the memory required to store one
block of texture is the same as the cache line size. Furthermore, for
scenes that we evaluate, there is enough spatial locality that larger
line sizes can be used.

5.3.3  Conflict Misses
Thus far, we have ignored conflict misses and have only shown

results for fully associative caches. In this section, we identify the
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FIGURE 5.4. The interaction between block size and cache line
size. These results were measured using fully associative 32KB
caches. The block dimensions are given in texels.
(a) Town-vertical. (b) Guitar-horizontal.
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kinds of conflict misses that can occur and discuss how they can be
avoided.

In Figure 5.1(b), we showed that in the base nonblocked repre-
sentation, the levels of a Mip Map are stored separately in memory
as two-dimensional arrays. Since these arrays are usually restricted
to have dimensions that are powers of two, conflicts are prone to
occur between neighboring texels that are in the same column.
This kind of conflict miss can be avoided with the use of a blocked
representation. The texels that lie within a block are guaranteed not
to conflict in the cache since they are stored consecutively in mem-
ory. Moreover, since the block size is selected to be the same as the
cache line size, the group of texels that lie within a block would be
held by the same cache line.

Conflicts can also occur between blocks which are in different
levels of a Mip Map. These conflicts are likely to be avoided with a
two-way set-associative cache since trilinear interpolations simul-
taneously access at most two levels of a Mip Map.

Figure 5.7 shows graphs of miss rate versus cache size for dif-
ferent cache associativities. A relatively large line size of 128
bytes was selected for these experiments because conflict misses
are more likely to occur when there are fewer lines in the cache.
Thus, these results are indicative of the worst-case effect of con-
flicts on miss rate. The results in Figure 5.7(a) are for the Goblet
scene and show that there is a significant difference in miss rates
between the direct-mapped caches and the two-way set-associative
caches. Since the triangles in the Goblet scene have fairly small
areas, it is unlikely that conflicts will occur between blocks that are
in the same level of a Mip Map. Hence, we attribute this difference
in miss rates to conflicts between blocks that are in different levels
of a Mip Map. The graph also shows that the two-way set-associa-
tive caches have the same miss rates as the fully associative caches
indicating that increasing the associativity beyond two-way does
not lead to any further improvement in miss rates.

The results in Figure 5.7(a) for the Goblet scene assumed a
blocked representation. Had the representation been nonblocked,
an eight-way associative cache would have been required to
achieve the same miss rates as a fully associative cache among the
small cache sizes. This result demonstrates that the blocked repre-
sentation is useful for avoiding conflicts between neighboring tex-
els in different rows of a 2D array.

The results in Figure 5.7(b) are for the Town scene. In this
graph, we also find that two-way set-associativity is useful for
eliminating conflicts between adjacent levels of a Mip Map. How-
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FIGURE 5.5. Effect of changes in line and block size on miss
rates for all four scenes. These results were measured using ful-
ly associative 32KB caches. The block dimensions are given in
texels.

ever, unlike Figure 5.7(a), there is a notable difference between the
miss rates for the two-way set-associative caches and the fully
associative caches. Vertical rasterization through the upright tex-
tures in the Town scene leads to conflicts between multiple blocks
which lie within the same 2D array. The graph for the Town scene
also shows that limited cache associativities beyond two-way are
beneficial for small cache sizes, but are ineffective at avoiding this
kind of block conflict miss among large caches. The results for the
Guitar scene are similar since the textures are accessed along a
variety of paths and the triangles are large. The results for the
Flight scene are also similar except that most of the conflicts are
avoided when the caches are eight-way set-associative and this is
attributed to the fact that the triangles are moderately sized.

In summary, the blocked representation prevents conflicts from
occurring between neighboring texels. Conflicts are also prone to
occur between blocks. Conflicts between blocks at adjacent levels
of the Mip Map can be successfully eliminated with two-way set-
associative caches. Conflict misses that occur within the same 2D
array are harder to prevent because the textures can be accessed
along any path. In the next section, we discuss a tiled rasterization
order that has the effect of reducing the number of blocks in the
working set that can conflict with each other.

6    Rasterization Order and Tiling in
Screen Space

The order in which screen pixels are traversed to determine
whether they lie within the boundary of a triangle is the rasteriza-
tion order. The rasterization order effects the texture access pattern
and consequently, it can influence the cache behavior. As can be
seen in Figure 6.1(a), the rasterization path of row major order
spans the entire width of the triangle. As a result, the working set
size for row major order is proportional to the amount of texture
needed for an entire row of fragments; thus the working set size is
related to the dimensions of the triangles that are mapped onto the
screen. We propose reducing this variance, and thus the cache size
needed for textures, by the use of a tiled rasterization order.

In a tiled order, a spatially contiguous block of screen pixels is
traversed consecutively. Figure 6.1(b) illustrates a tiled rasteriza-
tion path where the screen is statically decomposed into tiles. The
cost associated with tiling depends on the rasterization algorithm.
Additional setup computations for each tile may be required if the
rasterization, shading and texture parameters are computed incre-
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FIGURE 5.6. Effect of blocked representation on miss rates for
different cache sizes. These results were measured for the Gui-
tar scene using fully associative caches. The lines are labeled
with the line size and block dimensions given in texels.
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mentally across the surface of a triangle. One factor that has con-
siderable influence on the texture access pattern is the tile size. In
the following two sections, we address the issues of selecting a tile
size and study the implications of tiled rasterization with respect to
texture representation and cache organization.

6.1  Selecting a Tile Size
To understand the interaction between the tile dimensions and

the working set size, we show miss rate results versus cache size in
Figure 6.2 for the Guitar scene. The measurements were taken
with a blocked texture representation and a relatively large line
size of 128 bytes to take advantage of spatial locality. In Figure
6.2(a), we find that as we progress from very small tiles to medium
tiles, there are significant reductions in miss rate amongst cache
sizes that previously did not fit the working set. It is evident that
tiling causes the working set size to be reduced and this shows up
as fewer capacity misses. Figure 6.2(b) shows that the opposite
effect occurs as we progress from medium tiles to very large tiles
for the same scene. When the tiles are very small, the texture
access patterns converge towards the access pattern of a nontiled
rasterization order. On the other hand, when the tiles are very
large, the working sets are larger than the cache size and capacity
misses dominate the cache behavior.

We have found that tiled rasterization has a similar effect on the
results of the Town scene. One characteristic that is common to
both the Guitar and Town scenes is that they include large triangles
that span significant areas of the screen. When the triangles are
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FIGURE 5.7. Effect of cache associativity on conflict misses.
The textures are stored in blocks of 8x8 texels and the cache line
size is 128 bytes. (a) Goblet-horizontal. (b) Town-vertical.

moderately sized, as in the Flight scene, the effect of tiled raster-
ization on the working set size is less pronounced, and when the
triangles are small, as in the Goblet scene, the working set size
becomes completely unaffected by the tile dimensions. For scenes
with small triangles, it is advantageous to render neighboring trian-
gles that lie in the same tile consecutively to exploit spatial locality
and thus ensure that the working set size is minimized. We can
conclude that tiled rasterization does not hurt when the triangles
are small (and is thus robust), while in frequently occurring situa-
tions where the triangles are large it helps substantially in reducing
working set size.

6.2  Effect of Tiling on Conflict Misses
In Section 5.3.3, we found that conflicts between blocks that are

in the same level of a Mip Map are difficult to avoid because the
direction of texture accesses can be arbitrary. Assuming that neigh-
boring blocks do not map to the same line in the cache, tiled raster-
ization can reduce the occurrence of this kind of block conflict
since it confines the working set to a spatially contiguous region of
texture. Unfortunately, because the texture image dimensions are
powers of two and the memory required for a single row of texture
blocks can be a multiple of the cache size, it is likely that conflicts
will arise between neighboring blocks in the same column. One
way to ensure that neighboring blocks do not conflict is to place a
number of unused pad blocks at the end of each row of blocks as
illustrated in Figure 6.3(a). This scheme requires additional texel
addressing calculations which are shown below.

bw, bh: block width and height in texels. These are equal
and are powers of two.

ps: log2(bw * bh * number of pad blocks). Number of pad
blocks is a power of two.

by: block row coordinate
Texel address = Texel address computed for blocked

representation + (by << ps)
The shift operation shown above has a constant shift amount
assuming that the block dimensions and the number of pad blocks
remain fixed. Hence, the additional hardware overhead of padding
is just one addition per texel addressing calculation. Padding also
incurs a memory overhead, though this overhead tends to be negli-
gible for large textures where padding is most needed.

Another way to ensure that neighboring blocks do not conflict is
to use another level of blocking in the representation of the texture
images as illustrated in Figure 6.3(b). In this scheme, the two-
dimensional texture arrays would effectively be stored as six-
dimensional arrays. The size of the coarser blocks should be equal
to the cache size since this ensures that a square region of blocks
can be mapped into the cache without any conflicts. The additional
hardware overhead of another level of blocking is two additions
per texel addressing calculation.

Figure 6.4 shows the effect of tiled rasterization on conflict

(a)

FIGURE 6.1. (a) Illustration of nontiled horizontal rasteriza-
tion, (b) Illustration of tiled rasterization. The arrows indicate
the rasterization path within a tile and the numbers indicate the
order in which the tiles are rasterized.

(b)
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misses for the Town and Flight scenes. Comparing the tiled raster-
ization results for the Town scene in Figure 6.4(a) with the non-
tiled rasterization results previously shown in Figure 5.7(b), we
find that the rate of conflicts is quite diminished with tiled raster-
ization. As expected, the effect of tiled rasterization on block con-
flict misses in the Guitar scene is very similar. Even though the
Flight scene uses moderately sized triangles, it is highly prone to
conflicts between neighboring blocks that lie in the same column
because of the relatively large textures used for the terrain images.
Indeed, Figure 6.4(b) for the Flight scene shows that tiled raster-
ization by itself is not sufficient for avoiding block conflict misses.
However, when tiled rasterization is combined with either padding
or 6D blocking, the rate of block conflict misses is significantly
reduced. We can conclude that tiled rasterization effectively limits
the number of blocks in the working set that can conflict with each
other and that either padding or 6D blocking is needed to ensure
that conflicts do not occur between neighboring blocks.

7    Memory Bandwidth and Rendering
Performance

Perhaps the two most important metrics that characterize a tex-
ture mapping system are rendering performance and memory
bandwidth. In this section, we discuss the issues in texture caching
that effect rendering performance and after making some assump-
tions about the machine model, we relate the miss rates to memory
bandwidth.
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FIGURE 6.2. Effect of tiled rasterization on the working set size. These results were measured for the Guitar scene using fully asso-
ciative caches. The textures are stored in blocks of 8x8 texels and the cache line size is 128 bytes. The tile dimensions are given in
pixels. (a) Small to medium tile sizes. (b) Medium to large tile sizes.

FIGURE 6.3. (a) Illustration of a 4D blocked and padded rep-
resentation for one level of a Mip Map. We use the same num-
ber of pad blocks at the end of each row of blocks for all levels
of a Mip Map. (b) Illustration of a 6D blocked representation
for one level of a Mip Map. The size of the finer 2D blocks is se-
lected to be equal to the cache line size and the size of the coars-
er 4D blocks is selected to be equal to the cache size.
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Blocks
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7.1  Machine Model
As previously shown in Figure 2.1, the texture mapping hard-

ware consists of two components: a fragment generator and an
SRAM texture cache. We discuss the details of each of these com-
ponents separately.

7.1.1  Fragment Generator
The fragment generator is responsible for performing a fairly

large number of calculations. As mentioned earlier, these include
rasterizing triangles into fragments, computing level-of-detail and
texture addresses for each fragment, trilinear interpolation of tex-
els accessed from a Mip Map, and finally, applying the filtered tex-
ture to the fragments. To accomplish all of these tasks, we assume
that the fragment generator exploits parallelism and pipelining to a
great extent. We also assume that the clock frequency is 100 MHz
since this is representative of present-day ASIC technology.

An appropriate measure of rendering performance is the number
of textured fragments per second. One factor that can limit the
maximum bandwidth achieved is the number of texels that can be
accessed from the cache per cycle. Considering that a trilinear
interpolation requires eight distinct texels to be accessed from the
cache, a system that accessed just one texel per cycle would be
limited to 12.5 million textured fragments per second. It is appar-
ent that to achieve higher performance, more than one texel must
be accessed per cycle. This issue is discussed further in Section
7.1.2. For now, we assume that the machine can read four texels
per cycle, leading to a maximum bandwidth of 50 million textured
fragments per second. The computation time is factored out by the
pipelined nature of the system.

Another factor that can effect the performance of the system is
the latency associated with filling a cache line from memory when
a cache miss occurs. Even though the memory latency tends to be
very long (roughly fifty 10ns cycles for a 128 byte cache line), it
still must be completely hidden to achieve the maximum rate of
fragments textured per second. Note that the memory latency
would constrain the performance of the system if it were not hid-
den and that this reduction of fragment bandwidth becomes more
pronounced as we increase the clock rate or the number of texel
accesses per cycle. Another incentive for hiding the memory
latency is the notion of robustness of performance with respect to
different scenes. Some applications of real-time graphics require a
high level of performance even under the worst-case conditions. A
texturing system can sustain the maximum rate if the memory
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latency is completely hidden and the memory bandwidth is met.
One solution for hiding the memory latency is proposed in [13].

The basic idea is to compute the texel addresses far in advance of
the cache accesses by rasterizing the triangles twice: the first time
to compute the texel addresses and to prefetch the lines that are
missing in the cache and the second time to perform fragment tex-
turing and shading. Since the texel addresses are needed by both
rasterizers, they can either be computed independently by each ras-
terizer or they can be passed from the first rasterizer to the second
by means of a FIFO buffer. The former approach is likely to be
more costly because of the large number of calculations needed to
compute the texel addresses (please refer to Table 2.1).

7.1.2  SRAM Texture Cache
As mentioned in the previous section, it is important to be able

to access more than one texel from the cache in the same cycle. A
common way of designing a multi-ported cache is to interleave the
cache lines across multiple independently addressed banks [8].
Since a trilinear interpolation involves accessing neighboring tex-
els, the interleaving across banks in a texture cache must be at the
granularity of a texel rather than a cache line. A conflict-free
address distribution which allows up to four texels to be accessed
in parallel is possible if the texels are stored in a morton order
within the cache lines [3]. Morton order implies that the texels are
stored in 2x2 blocks. The texels within each 2x2 block are inter-
leaved across the four banks and the same interleaving pattern is
used for all 2x2 blocks that lie within a cache line to ensure that
adjacent texels in abutting blocks are assigned to different banks.

While it may seem from Table 2.1 that the number of calcula-
tions for texture mapping is sufficiently high that the computation
rather than cache bandwidth is the bottleneck, in practice this is not
the case. Comparing the number of calculations required in each
phase of texture mapping, we note that the trilinear interpolation
portion is the most computationally-intensive. The nature of this
computation is such that cache bandwidth is critical to perfor-
mance. Consider the core of a trilinear interpolation, which must
be performed separately for each R,G,B,A color component:
Interpolated value = Texel(n) + Weight * ( Texel(n+1) - Texel(n) )
We observe that this calculation requires pairs of texel values
before it can proceed. Limiting the number of texel accesses to one
per cycle constrains the rate of subtractions to one every other
cycle. In contrast, a two-ported cache would allow subtractions

 direct mapped, tiled
 2-way SA, tiled
 2-way SA, tiled & padded
 2-way SA, tiled & 6D blocked
 fully associative, tiled

|
1

|
2

|
4

|
8

|
16

|
32

|
64

|
128

|
256

|0

|1

|2

|3

|4

|5

|6

|7

|8

|9

 Cache Size (KB)

 M
is

s 
Ra

te
 (%

) direct mapped, tiled
 2-way SA, tiled
 2-way SA, tiled & padded
 2-way SA, tiled & 6D blocked
 fully associative, tiled

|
1

|
2

|
4

|
8

|
16

|
32

|
64

|
128

|
256

|0

|1

|2

|3

|4

|5

|6

|7

|8

|9

 Cache Size (KB)

 M
is

s 
Ra

te
 (%

)

(a) (b)
FIGURE 6.4. Effect of tiled rasterization on conflict misses. The textures are stored in blocks of 8x8 texels and the cache line size is
128 bytes. The tiles are 8x8 pixels. The padded results use a pad of four blocks at the end of each row of texture blocks. For the 6D
blocked results, we use the largest block size for the coarser blocks that is less than or equal to the cache size.
(a) Town scene (rasterization is in column major order within and between tiles). (b) Flight scene.

every cycle. One might also consider adding more than two cache
ports so that this calculation can be performed in parallel on differ-
ent pairs of texels. Since the trilinear interpolation phase is the bot-
tleneck in the fragment generator pipeline, improving its
performance would directly impact the overall performance of a
fragment generator. While we have been mostly focussing on spe-
cial-purpose hardware, recent additions of visualization instruc-
tions such as MMX [19] and VIS [16] and deep pipelines have
shifted the bottleneck away from computation in microprocessors.

7.2  Memory Bandwidth
The memory bandwidth results assuming that the system oper-

ates at peak bandwidth of 50 million textured fragments per sec-
ond are shown in Table 7.1. We report results for three different
cache sizes: 4KB, 32KB, and 128KB. The 4KB cache is represen-
tative of a very small on-chip cache. The 32KB cache is large
enough to hold the working sets, yet it can also be placed on-chip.
Both the 4KB and 32KB caches are two-way set-associative. The
128KB cache size provides a measure of how low the miss rates
and memory bandwidths can become if a very large cache is used.
This cache is direct mapped since associativity makes little differ-
ence in miss rates at this size. The results were measured for the
blocked representation since we previously found this texture rep-
resentation to be most suitable. In addition, the texture arrays are
padded and the rasterization in screen space is tiled to reduce con-
flict misses and working set size.

One trend that can be seen in these results is that the memory
bandwidth requirements are much reduced in the transition from
the 4KB cache to the 32KB cache for all scenes except the Flight
scene where the reductions are more modest. The transition to the
128KB cache leads to less drastic reductions in memory band-
widths demonstrating that fairly small cache sizes are adequate for
texture mapping. Another trend is that the memory bandwidth
requirements increase very slightly with increasing line size for the
32KB and 128KB caches. This result is encouraging because
larger line sizes can elicit a larger fraction of the peak memory
bandwidth.

We would like to compare the memory bandwidth requirements
discussed above for a fragment generator that uses an SRAM tex-
ture cache with the memory bandwidth requirement of a fragment
generator of equivalent performance that directly accesses a dedi-
cated DRAM memory system for all texel lookups. For the latter
system, which does not use a cache, the memory bandwidth
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requirement is 1.5 GBytes/second (4 bytes/texel * 8 texels/frag-
ment * 50M fragments/second). On the other hand, the memory
bandwidth requirement for a system that uses a 32KB cache is
between 100 and 450 MBytes/second. We see that there is a three
to fifteen times reduction in memory bandwidth requirements due
to caching.

Although the main focus of this paper has been on a graphics
rendering system with a single fragment generator, it is interesting
to note that the memory bandwidths are low enough that a parallel
system could be built with multiple fragment generators sharing a
single texture memory, each with their own cache. As mentioned
earlier, this makes it possible to avoid replicating the textures in
each fragment generator memory as is done in the RealityEngine.

8    Conclusions and Future Work
As we move into the era of the Internet with 3-D virtual chat

groups, realistic visualization of scientific phenomenon, photoreal-
istic computer games, the need to provide high performance yet
cheap computer graphics is becoming critical. While much atten-
tion has been given in the past to design of memory hierarchies for
general-purpose computers using the SPEC benchmarks and trans-
action processing benchmarks, so far there is little published data
available on core graphics algorithms like texture mapping. This
paper attempts to fill that gap.

We have built a sophisticated environment in which computer
graphics workloads can be rendered, and our simulation results
show that caches can be highly effective for texture-mapped
graphics. Traditionally, caches have not been used in computer
graphics systems where the philosophy has been to provide guar-
anteed performance under worst-case conditions, although this
philosophy is beginning to change [13]. By using techniques such
as (i) block-based representation of Mip-Mapped textures, (ii) tiled
rendering in the screen space itself, and (iii) padded or six-dimen-
sionally blocked texture arrays, we can robustly reduce the miss
rates. We study the relationship between block size in texture rep-
resentations and cache line size, and also discuss which tile sizes
are appropriate. We observe that caches as small as 16 KBytes
with 2-way associativity (to reduce conflict miss rates for Mip
Map levels) can reduce the effective bandwidth needed from the
memory system by a factor of three to fifteen, while also reducing
the latency of access. Because of the above tiling techniques, the
performance can be made robust regardless of the scenes that are
being texture mapped.

A promising approach for rendering directly from compressed
textures has been proposed in the literature [2]. In future work, it
would be interesting to study the interaction between compressed
representations of textures and cache architectures. Another area
which we have not studied in detail is the use of texture caching in
parallel architectures. One of the interesting questions that must be

Cache Size
Associativity

4KB
2-way Set-Associative

32KB
2-way Set-Associative

128KB
Direct Mapped

Line Size
Block Size

32
4x4

64
4x4

128
8x8

32
4x4

64
4x4

128
8x8

32
4x4

64
4x4

128
8x8

Sc
en

e

Flight 396 (3.24) 447 (1.83) 610 (1.25) 355 (2.91) 386 (1.58) 435 (0.89) 339 (2.78) 366 (1.50) 425 (0.87)
Town 233 (1.91) 271 (1.11) 444 (0.91) 99 (0.81) 103 (0.42) 122 (0.25) 77 (0.63) 78 (0.32) 88 (0.18)
Guitar 319 (2.61) 371 (1.52) 552 (1.13) 154 (1.26) 161 (0.66) 215 (0.44) 120 (0.98) 125 (0.51) 137 (0.28)
Goblet 385 (3.15) 566 (2.32) 596 (1.22) 189 (1.55) 212 (0.87) 225 (0.46) 194 (1.59) 215 (0.88) 229 (0.47)

TABLE 7.1. Memory bandwidth requirements in MBytes/second for different cache and line sizes. The performance of the system is
50 million textured fragments/second. The miss rates are also shown in parentheses. The texture maps are stored in a blocked and
padded representation in memory. The block dimensions are given in texels and the pad is four blocks at the end of each row of
texture blocks. The rasterization is tiled in screen space using 8x8 pixel tiles. Texels are 32-bits.

addressed in this area is how to balance the work among multiple
fragment generators without reducing the spatial locality in each
reference stream.
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