EDAN35 HIGH PERFORMANCE COMPUTER GRAPHICS

"." =
’ 4
-

Ray Tracing

EDAN35: Seminar 1

Overview

 Ray tracing overview (recap from EDAF80)
e swTracer C++ framework overview
e Lab 1 - Whitted Ray Tracing

Ray Tracing

* For each pixel trace a ray
* Find the nearest object along the ray

* Global sampling for lighting and visibility

» "Rasterization is fast, but needs cleverness to support complex visual
effects. Ray tracing supports complex visual effects, but needs
cleverness to be fast.”

- David Luebke, Nvidia

Ray Tracing

e Construct a line (ray) from the eye
* through the view plane and into the scene

* Find intersection with objects

View plane

Shadows

* Trace a ray from intersection to every light to check
for shadows and shade surface

Light

View plane

Shadows

Reflection

Refraction

Light

Recursive Ray Tracing

e At each intersection, trace shadow, reflection, and
refraction rays

Light
Refraction 8

Reflection

N
.
LN
.
s
Shad

Ray definition

Origin and direction

Position on ray is represented using a parameter, t
e c=(1-t)o+th
e c=o0+tlb-0)=0+td

e cis apoint along the ray

t >=0, ray is a half line Origin, o

€ <t < FLT_MAX

* Small epsilon avoids intersecting surface due to
numerical imprecisions

Ray Sphere Intersection

* Analytical solution @

* Sphere centre: ¢, and radius r

1
* Ray: r(t) =o+1td /

* Sphere: llp—cll=r °
* Replace p by r(t), and square it:

(r(t) —c)-(r(t) —c)—r*=0
(0+td—c)-(o+td—c)—r>=0
(d-d)t*+2((o—c)-d)t+(0o—c)-(o—c)—7*=0
t?+2((o—c)-d)t+(o—c)-(o—c)—r*=0]l =1

Ray Sphere Intersection

2 +2((0—¢)-d)t+(0—c) (0—c) —r2 =0 /
* Some optimisations can be done d
(o—c¢)-d>0? o

(o—c)-(0—¢)—1r2<0?
* Such tests are called “rejection tests”

* This approach can be extended for
other shapes

Ray Triangle Intersection

Ray Triangle Intersection

Solve the intersection problem
In two steps:

1. Find the intersection point
(Q) of the ray with the
triangle plane

2. Determineif Qisinside the
triangle bounds using
barycentric coordinates

Ray Triangle Intersection

P

Recall...

A triangle is defined by three vertices
V.,i={0, 1, 2}

A ray is defined by some origin P, and
a direction vector d.

An intersection with the triangle plane
will occur at some distance t along the
ray.

Q=P+td

Ray Triangle Intersection

P Step 1: Find Q

Plane normal

n—e; X e

Plane equation

n-X-+m=>0
m:—n-VO

Note: The magnitude of n corresponds
to 2x the area of the triangle.

Ray Triangle Intersection

)2 Step 1: Find Q

Plane intersection

t — H'P+’ffl-
-n-d
Q="P+td

Must also make sure that

tmin <t < tma,:rc

Step 2: Find barycentric coordinates

Create vector r, which is coplanar with e1and ez

r=Q -V

1l Barycentric vand w
ey xr| [[rxea|
bV —= p—
||]
Vb Barycentric coordinates can be expressed as the area of a “sub-

triangle” divided by the area of the whole triangle

Thus, if the following holds, Q is inside the triangle

v >0
w >0
vt+w <1

Ray Triangle Intersection

* This method is just one of many
* Many faster ones exist

Hierarchical data structure

(O
NS

A

Bounding Volume Hierarchy (BVH) is most the common acceleration structure for ray tracing

swlracer Overview

* Written in C++
 Windows/Linux/Mac via CMake
* Very basic 3 component Vector library swVec3.h

e Using stb_image.h for writing images
* PNG

sw::Vec3 vector class

e Colorisa sw: :Vec3 class

e sw::Vec3 supports various math operations (+, -, *, +=, etc)
W =1u * v; // dot product
*w =u % Vv; // cross product
* v.normalize (

) ;
ev.m[0], v.m[1l], v.m[2], v.X(), Vv.v(), Vv.zZ()

sw::Ray class

* Class describing a ray in 3D
e Origin (sw::Vec3) orig
e Direction (sw: :Vec3) dir
* Constructor
* sw::Ray(origin, direction, minT, maxT)

sw::Camera class

* Class describing a camera
* Constructor

* sw: :Camera (origin, lookAt, up, fov, aspect);
* vo1d sw::Camera: :setup(width, height);

* Run at start of program
* sw::Ray sw::Camera::getRay(x, V)

e Returns ray for given (x,y) in image plane, floats

sw::Primitive class

* Abstract class describing an object in the scene
*virtual bool intersect (ray, 1sect);

* Material material;

* Inherited by sw: : Sphere and sw::Triangle

sw::Scene class

Stores a list of primitives — sw: : Primitive class

* Sphere class includes sphere intersection code already

Primitives have materials — sw: :Material class

* color, reflectivity, transparency, refractivelndex

Find closest intersection, returns true if intersection found

* bool Scene::intersect (const Ray* r,
* returns intersection information, slower

Find any intersection

* bool Scene::intersect (const Ray* r,

» Used for shadow rays, can be faster

Intersection &isect)

Intersection &isect,

true)

sw::Intersection class o

* getShadowRay (lightPos) ; @L§\:EE$

* getReflectedRay () ; position
* getRefractedRay () ;

* position // Position of hit point
* normal // Surface normal at hit point

*ray // Incoming ray direction

Main function

Create image buffer (allocates memory)

Create scene

* Creates materials, add primitives to scene

Setup camera

Ray traces pixels
* Loops over each pixel in scene

 Calls traceRay() for rays each pixel, at center 0.5, 0.5

Creates output image

swlracer flow overview

camera

getRay()

main intersect() intersect()
> scene rimitive
traceRay() P

writeColor()

Whitted Ray Tracing

* 1980, “An Improved
lllumination Model for Shaded
Display”, Turner Whitted,
CACM

e Simple surface model, perfect
reflection

e Shadow rays trace to point
light sources

Lab 1 - Whitted Ray Tracing

* Diffuse Shading
e Ray-triangle intersection

* Whitted Ray Tracing
* Shadows
e Reflections
» Refractions

e Supersampling

Start Up

* White if the ray hits anything, black if background

Diffuse Shading

* Need to modify traceRay () inmain.cpp

* Change white return color to
* material.color * N * L
 “N dot L”, consider the cases

* Light vector is already calculated in the code: 1ightDir

Diffuse Shading

Ray Triangle Intersection

* Add triangles to scene (uncomment floor of the box)
* Need to implement intersect () in swTriangle.cpp

* Add in walls and ceiling when ray triangle intersection works

Ray Triangle Intersection

Ray Triangle Intersection

Shadows

If not in shadow, return shaded

Use hit.getShadowRay()

* hitis the hit point (sw: : Intersection)returned by scene.intersect ()
Only 1 light source in swTracer

New rays, starting from a surface need a small epsilon

* 0.0lisusedin swTracer

* This is needed so the ray doesn’t intersect with the surface

Shadows

Reflection

* Reflection rays are traced recursively
* Set a recursion depth, start with 2 or 3

Reflection in main.cpp

» Add reflective spheres to scene (uncomment code)
e Recursively call traceRay()

* Decrease depth each time traceRay() is called
* Only trace recursively if depth >0

e Use hit.getReflectedRay() to get the reflected ray
* Also check reflectivity > 0
* Linearly interpolate reflected color with diffuse color

Reflection in swintersection.cpp

*lnsw::Intersection: :getReflectedRay ()
 Compute the reflected vector using N and ray direction

* Remember GLSL refect (1, n)=i-2(n‘i)n

Reflection - without

Reflection - with

Refraction in swintersection.cpp

g, 1 t =ni+ (nr —/c)n
r—=—i-n
c=1-—n*(1-r?

7) Eta, ratio of refractive indexes

* Usein sw: :Intersection: :getRefractedRay ()

* Compute the outgoing refracted vector
* Checkifc<O

e Use reflection direction instead

Refraction in main.cpp

* Add refractive spheres to scene (uncomment code)
* Check material transparency > 0 and depth >0
* Tracearayusing hit.getRefractedRay ()

* Linearly interpolate transparency color with diffuse color using
transparency coefficient

Refraction - without

Refraction - with

Supersampling

* Increase sample count per pixel

» Use NxN stratified/jittered samples

(x,y) (x,y)

(x+1,y+1) (x+1,y+1)

(x+1,y+1)

Supersampling

* Change pixel tracing inmain. cpp
* Add X,Y loops around pixel coordinate creation

e Use uniform() to get value between [0,1)
* Add to sub-pixel grid position

e Sum all sub-pixel rays together
* Divide by total number of sub-pixel rays

Supersampling — 1 SPP

Supersampling — 9 SPP

10242
9 SPP

Ray Tracing in One
Weekend

https://raytracing.github.io/

Ray Tracing SW

* Ray Tracing in One Weekend https://raytracing.github.io

* Classic
* POV-Ray http://www.povray.org

e Path Tracers
* PBRT https://www.pbr-book.org
* Mitsuba 2 https://www.mitsuba-renderer.org

https://raytracing.github.io/
http://www.povray.org/
https://www.pbr-book.org/
https://www.mitsuba-renderer.org/

e Start now!

* On webpage
* Link to GitHub repo with code
* Lab instructions

	Slide 1: Ray Tracing
	Slide 2: Overview
	Slide 3: Ray Tracing
	Slide 4: Ray Tracing
	Slide 5: Shadows
	Slide 6: Shadows
	Slide 7: Reflection
	Slide 8: Refraction
	Slide 9: Recursive Ray Tracing
	Slide 10: Ray definition
	Slide 11: Ray Sphere Intersection
	Slide 12: Ray Sphere Intersection
	Slide 13: Ray Triangle Intersection
	Slide 14: Ray Triangle Intersection
	Slide 15: Ray Triangle Intersection
	Slide 16: Ray Triangle Intersection
	Slide 17: Ray Triangle Intersection
	Slide 18
	Slide 19: Ray Triangle Intersection
	Slide 20: Hierarchical data structure
	Slide 21: swTracer Overview
	Slide 22: sw::Vec3 vector class
	Slide 23: sw::Ray class
	Slide 24: sw::Camera class
	Slide 25: sw::Primitive class
	Slide 26: sw::Scene class
	Slide 27: sw::Intersection class
	Slide 28: Main function
	Slide 29: swTracer flow overview
	Slide 30: Whitted Ray Tracing
	Slide 31: Lab 1 - Whitted Ray Tracing
	Slide 32: Start Up
	Slide 33: Diffuse Shading
	Slide 34: Diffuse Shading
	Slide 35: Ray Triangle Intersection
	Slide 36: Ray Triangle Intersection
	Slide 37: Ray Triangle Intersection
	Slide 38: Shadows
	Slide 39: Shadows
	Slide 40: Reflection
	Slide 41: Reflection in main.cpp
	Slide 42: Reflection in swIntersection.cpp
	Slide 43: Reflection - without
	Slide 44: Reflection - with
	Slide 45: Refraction in swIntersection.cpp
	Slide 46: Refraction in main.cpp
	Slide 47: Refraction - without
	Slide 48: Refraction - with
	Slide 49: Supersampling
	Slide 50: Supersampling
	Slide 51: Supersampling – 1 SPP
	Slide 52: Supersampling – 9 SPP
	Slide 53
	Slide 54: Ray Tracing in One Weekend
	Slide 55: Ray Tracing SW
	Slide 56

