
Texture and
Depth Compression

Michael Doggett
Department of Computer Science

Lund University

2023

© 2010 Michael Doggett

Project

• 3D graphics project

• Implement 3D graphics algorithm(s)

• C++/OpenGL(Lab2)/3D engine

• Demo, Game

• Proposal - Long paragraph by next
Monday (Nov 27)

• More in the next lecture

Pixel shader

Vertex shader

Today’s stage of the
Graphics Pipeline

Rasterization

FrameBuffer

Z & Alpha

Texture

© 2009 Tomas Akenine-Möller 4

Texturing – the tiny details

• Surprisingly simple technique
–Extremely powerful, especially with programmable

shaders
–Simplest form: ”glue” images onto surfaces (or

lines, or points)

Image from ”lpics”-paper by Pellacini et al. SIGGRAPH 2005
PIXAR Animation Studios

© 2009 Tomas Akenine-Möller 5

Texture space, (s,t)

• Texture resolution, often 2a x 2b texels
• The ck are texture coordinates, and belong to a

triangle’s vertices
• When rasterizing a triangle, we get (u,v)

interpolation parameters for each pixel (x,y):
–Thus the texture coords at (x,y) are:

(u,v)

(s,t)

© 2009 Tomas Akenine-Möller 6

A texture image + coord systems

• An wxh=8x4 texture.
–(s,t) are independent of texture resolution
–(sw,th) depend on the resolution, and are used to

access texels…
• Each pixel in a Texture is called a “Texel”

© 2009 Tomas Akenine-Möller

Texture filtering

MINIFICATION MAGNIFICATION

What do we
get here?

© 2008 Tomas Akenine-Möller

• We basically want the sum of the texels in
the footprint (dark gray) to the right

© 2009 Tomas Akenine-Möller 8

Texture magnification (1)

• Middle: nearest neighbor – just pick nearest
texel

• Right: bilinear filtering: use the four closest
texels, and weight them according to actual
sampling point

© 2009 Tomas Akenine-Möller 9

• Bilinear filtering is simply, linear filtering in x:

Texture magnification (2)

t00 t10

t11t01

• Followed by linear filtering in y:

© 2009 Tomas Akenine-Möller 10

Texture minification
• If nearest neighbor or bilinear filtering is

used, then serious flickering will result
–Extremely annoying

Nearest
neighbor

Trilinear
mipmapping

For a pixel here, there is a 50%
chance of getting a black texel

© 2009 Tomas Akenine-Möller 11

Texture minification: mipmapping

An image pyramid
of low-pass
filtered images

© 2009 Tomas Akenine-Möller

© 2009 Tomas Akenine-Möller 12

Trilinear Mipmapping (1)

• Basic idea:
–Approximate (dark gray footprint) with square
–Then we can use texels in mipmap pyramid

© 2009 Tomas Akenine-Möller 13

Trilinear mipmapping (2)

• Compute d (Level of Detail, LOD) (see Chapter 5), and
then use two closest mipmap levels
–In example above, level 1 & 2

• Bilinear filtering in each level, and then linear blend
between these colors à trilinear interpolation

• Nice bonus: makes for much better texture cache
usage

Text

© 2009 Tomas Akenine-Möller 14

Representation of textures in memory
• Normally, a 4x4 texture is stored as:

–RGBA0, RGBA1, RGBA2, ... RGBA15
• What if, we traverse in the vertical

direction?
–E.g., accessing 1,5,9,13
–Quite bad if we read, say, 4 texels into

the cache at a time

• Are better texel orderings possible?
• With representation to the right, only

two blocks are read into the cache

15141312
111098
7654
3210

15141110
131298
7632
5410

• This representation will (on average) get the same
performance regardless of traversal direction!!!

© 2009 Tomas Akenine-Möller 15

• This is called a ”blocked” or ”tiled”
representation - “z-order”

• It is a 4D structure: first find 2x2
block, then texel in block

Representation of textures in memory

15141110

131298
7632
5410

• In general, we have an nxn block...
– n is power of 2

• Good representation for texture caches

© 2010 Michael Doggett

Pixel shader

Vertex shader

Graphics Pipeline
Z compression

Rasterization

FrameBuffer

Z & Alpha

Texture
Z and Color

Compression

© 2012 Michael Doggett

Z & Alpha Performance

• Recall Memory Bandwidth has a big impact
on performance

• Both units connect directly to memory

• Computation power of GPUs and CPUs
increasing more rapidly than memory
bandwidth

• Compression reduces the data before we
transfer it

© mmxvi mcd

• Dynamic Random Access Memory

• Must have power and be refreshed to maintain it

• Discrete GPU memory - Fast and reasonably priced

• Many different types : SDRAM, VRAM, SGRAM, etc.

• Multiple improvements of data transfer

• DDR - sends data on both low-to-high and high-to-low clock

• QDR, then GDDR (Graphics DDR) versions 2, 3, 4, 5, 6, 6X

• HBM - High Bandwidth Memory

• 3D-stacked DRAM

DRAM overview

© 2012 Michael Doggett

PC memory
architecture

935GB/s GDDR5

32GB/s
PCIe4 16x

NVIDIA RTX3090

CPU with Integrated GPU
Intel, AMD

GPU

CPU

GPU

System
DRAM

Graphics
DRAM

86GB/s

Graphics Card

© mmxiii mcd

Mobile Memory
Architecture

Based on 2020 iPhone12

GPU

System DRAM
6GB

Storage :
Flash Memory

64-512GB

43 GB/s

CPU

Phone

Video
Cache

MD21

Why use depth buffering for
visibility determination?

From “A Characterisation of Ten Hidden-Surface Algorithms”,
 Ivan Sutherland, Robert Sproul, and Robert Schumacker (ACM Computing Surverys, March 1974)

• The “brute-force approach” is depth buffering
• Other methods considered used polygon sorting
• Depth-buffering was very expensive comparatively,
• but won when DRAM became cheap

MD21

Depth Buffer Bandwidth

• A major component of memory bandwidth

• Hierarchical Z reduced the cost

• Compression will reduce that cost further

MD21

Depth Buffer Compression
• Custom hardware to compress/decompress data

• Compress and write, Read and decompress

• Depth Buffer stored in graphics memory
compressed

• Depth on-chip Cache, can be compressed

• If not changed, no need to write back

• Reduces bandwidth, not necessarily storage

• Must always have memory for decompressed
mode Memory

Depth Cache

CompressDecompress

GPU

MD21

Depth Buffer Compression

• Very little public information

• Highly coherent set of values

• Depth is linear in screen space

• Could be all the same triangle

• Pixel tiles, e.g. 8x8

MD21

Depth Offset Compression

• Use ZMin and ZMax values

• Store Z as offset from these

• Can use limited number of bits as offsets

• Offset must be within limited range of ZMin or ZMax

• Example storage

• Use 8 bits for each offset, reduced from 24 bits for Z

• Can use use MSBs for ZMin/ZMax, and LSBs for offsets

• Allows concatenation, so don’t need adders/subtractors

ZMin ZMax

8bit range

z=0 z=1

© 2010 Michael Doggett

Plane Equation Compression

• Each triangle can be represented as a plane

• For every triangle in a tile store the triangle’s plane equation

• Store one depth in center of tile, and an x-slope (dz/dx),
and y-slope (dz/dy) across the tile

• For every pixel in the tile store an index to find the matching
plane equation

• Works great for multisample!

• Random access

• only decompress necessary pixels

• More info

• [VanHook07] US Patent 7,242,400

© 2010 Michael Doggett

Plane Equation Compression
• Plane 0 : Zc, x slope, y slope

• Plane 1 : Zc, x slope, y slope

• Plane 2 : Zc, x slope, y slope

• Plane Equations

• Zc is 3 bytes, slopes are 2 bytes

• 3 x (3 + 2 + 2)Bytes = 21Bytes

• Indexes

• 64 x 2bits = 16Bytes

• Compressed

• 37Bytes

• Uncompressed

• 64 x 3Bytes = 192Bytes

• Compression ratio

• 19%

2 2 2 2 2 2 2 2

1 2 2 2 2 2 2 2

1 1 2 2 2 2 2 0

1 1 1 2 2 2 0 0

1 1 1 1 2 0 0 0

1 1 1 1 0 0 0 0

1 1 1 0 0 0 0 0

1 1 0 0 0 0 0 0

© 2010 Michael Doggett

Next ...

• Tuesday and Wednesday

• Assignment 2 marking in Pluto

• Next lecture

• Antialiasing

• Texture Compression

• Start project

