EDAN35 HIGH PERF()\RMANCE.EO.MPUT-ER GliAPHICS

ok
-

Texture and
Depth Compression

Michael Doggett
¢ Department of Computer Science

LG s Lund University

LZund University Grophics Group

Project

® 3D graphics project
® |mplement 3D graphics algorithm(s)
o C++/OpenGL(Lab2)/3D engine
® Demo, Game

® Proposal - Long paragraph by next
Monday (Nov 27)

® More in the next lecture

© 2010 Michael Doggett

Today’s stage of the
Graphics Pipeline

—

=

Texturing — the tiny details

Image from ”lpics”-paper by Pellacini et al. SIGGRAPHA206;5
PIXAR Animation Studios

» Surprisingly simple technique
—Extremely powerful, especially with programmable
shaders

—Simplest form: "glue” images onto surfaces (or
lines, or points)

Texture space, (s,?)

o(l.1)

o Texture resolution, often 24 x 2t texels

* The ck are texture coordinates, and belong to a
triangle’s vertices

» \When rasterizing a triangle, we get (u,v)
interpolation parameters for each pixel (x,y):
—Thus the texture coords at (x,y) are:

(s,t) = (1 —u —v)c” + ue' + ve?

A texture image + coord systems

5.0 7 A :
10 A A L L L L e e e
2
=t 1 e
] '
0,
Y s mm e ————
-1
1_0' N S N N SRR N SN SRS S SN
] } 0] 2 4 6 7 8
[>
0.0 1.0
10 - 90

* An wxh=8x4 texture.
—(s,¢) are independent of texture resolution

—(sw,th) depend on the resolution, and are used to
access texels...

« Each pixel in a Texture is called a “Texel”

Texture filtering

screen space

|

—_—‘\

texture space

—

|

V

L X

\

[

]

What do we
get here?

* We basically

| / L

wan u he texels In

the footprint (dark gray) to the right

texture space

MINIFICATION

\\/’

[

==

S

minification

texture space

MAGNIFICATION

[==

magnification © 2008 Tomas Akenine-Moller

Texture magnification (1)

* Middle: nearest neighbor — just pick nearest
texel

* Right: bilinear filtering: use the four closest
texels, and weight them according to actual
sampling point

Texture magnification (2)

* Bilinear filtering is simply, linear filtering in Xx:
a = (1 — (l)t(m + atqo
b = (1—a)ty +aty
 Followed by linear filtering in y:

f = (l — 3) a-+ Ob

Texture minification

* |If nearest neighbor or bilinear filtering IS
used, then serious flickering will result

—Extremely annoying

W Trilinear >
'iﬂ e ~ F
Vy i 2“— “u = n I n ";'_;;,“.
Nearest 7aa mipmapping ¢
\\\.

/

o —
— —
E— - = W —— 3
== = o = — = - = = - = — = —

= — = -

b ———— — e — — ‘\\“\‘
e ——— ‘\“\s‘\‘
ssss‘\s

e | —
S —

L= - I ——— e ———— —
- - ——— e —
| -— - - = B ———
- - i ———
T —
e --"- Q“s‘s
“ ‘s — —

e e —— . —
S e ——

For a pixel here, there is a 50%
chance of getting a black texel

10

Texture minification: mipmapping

SSuThe W

32 X 32 16 x 16

~ level 3
S level 2

s ﬂi*;- level 1 An image pyramid
of low-pass

filtered images

11

Trilinear Mipmapping (1)

texture space

» Basic idea:
—Approximate (dark gray footprint) with square
—Then we can use texels in mipmap pyramid

12

Trilinear mipmapping (2)

level 1 level 2

— level 3

- X level 2
(S ,f ,M
d .‘#‘T’ =~ level 1
\

ars S leve 1 O

 Compute d (Level of Detail, LOD) (see Chapter 5), and
then use two closest mipmap levels

—In example above, level 1 & 2

* Bilinear filtering in each level, and then linear blend
between these colors = trilinear interpolation

* Nice bonus: makes for much better texture cache
usage

13

Representation of textures in memory

* Normally, a 4x4 texture is stored as:
~RGBA,, RGBA,, RGBA,, ... RGBA,: 0

 What if, we traverse in the vertical
direction?
—E.g., accessing 1,5,9,13

—Quite bad if we read, say, 4 texels into
the cache at a time

12 14| 15

1
4/8/6/|7
8| 9 10|11

13

!

» Are better texel orderings possible? g ; : :
 With representation to the right, only 9 [12]13
two blocks are read into the cache 10| 11(14| 15

!

* This representation will (on average) get the same
performance regardless of traversal direction!!!

14

Representation of textures in memory

 This is called a "blocked” or "tiled”

114 5
sle 7| representation - “z-order”

9112/ 13| o |t |s a 4D structure: first find 2x2

1011145 block, then texel in block

* In general, we have an nxn block...
—n Is power of 2

* Good representation for texture caches

15

Graphics Pipeline
Z compression

© 2010 Michael Doggett

Z & Alpha Performance

® Recall Memory Bandwidth has a big impact
on performance

® Both units connect directly to memory

® Computation power of GPUs and CPUs

increasing more rapidly than memory
bandwidth

® Compression reduces the data before we
transfer it

© 2012 Michael Doggett

DRAM overview

Dynamic Random Access Memory

® Must have power and be refreshed to maintain it
Discrete GPU memory - Fast and reasonably priced

Many different types : SDRAM,VRAM, SGRAM, etc.

Multiple improvements of data transfer

® DDR - sends data on both low-to-high and high-to-low clock
e QDR,then GDDR (Graphics DDR) versions 2, 3,4, 5, 6,6X

HBM - High Bandwidth Memory
® 3D-stacked DRAM

PC memory
architecture

32GB/s
PCle4 | 6x

CPU with Integrated GPU CPU
Intel, AMD

@ 2N NVIDIA RTX3090

86GB/s B/s GDDR5

Graphics
DRAM

Graphics Card

© 2012 Michael Doggett

Mobile Memory
Architecture

43 GB/s

Storage :
Flash Memory
64-512GB

System DRAM

6GB

Based on 2020 iPhonel?2

Why use depth buffering for
visibility determination?

hatdware Thus the only variation of interest
here is Newell et al, an order of magnitude less
"costly” and the brute-force approach which is
already ridiculously expensive.

From “A Characterisation of Ten Hidden-Surface Algorithms”,
Ivan Sutherland, Robert Sproul, and Robert Schumacker (ACM Computing Surverys, March 1974)

 The “brute-force approach” is depth buffering

e Other methods considered used polygon sorting

 Depth-buffering was very expensive comparatively,
e but won when DRAM became cheap

Depth Buffer Bandwidth

* A major component of memory bandwidth
 Hierarchical Z reduced the cost

e Compression will reduce that cost further

Depth Buffer Compression

e Custom hardware to compress/decompress data
e Compress and write, Read and decompress

e Depth Buffer stored in graphics memory
compressed

e Depth on-chip Cache, can be compressed EEUN EE S

e & 8 &

e |f not changed, no need to write back Decompress Compress

3 1

e Reduces bandwidth, not necessarily storage

e Must always have memory for decompressed
mode

Depth Buffer Compression

e Very little public information
 Highly coherent set of values
* Depth is linear in screen space
 Could be all the same triangle

o Pixel tiles, e.g. 8x8

Depth Offset Compression

. 8bit range

< >
I I

z=0 ZMin ZMax =1

e Use ZMin and ZMax values
e Store Z as offset from these
e Can use limited number of bits as offsets
e Offset must be within limited range of ZMin or ZMax
e Example storage
e Use 8 bits for each offset, reduced from 24 bits for Z
e Can use use MSBs for ZMin/ZMax, and LSBs for offsets

* Allows concatenation, so don’t need adders/subtractors

Plane Equation Compression

Each triangle can be represented as a plane
For every triangle in a tile store the triangle’s plane equation

® Store one depth in center of tile,and an x-slope (dz/dx),
and y-slope (dz/dy) across the tile

For every pixel in the tile store an index to find the matching
plane equation

Works great for multisample!
Random access
® only decompress necessary pixels

More info
® [VanHook07] US Patent 7,242,400

© 2010 Michael Doggett

Plane Equation Compression

Plane 0 : Z, x slope, y slope
Plane | : Z, x slope, y slope

Plane 2 : Z, x slope, y slope

Plane Equations

® /. is 3 bytes, slopes are 2 bytes
® 3 x(3+2+ 2)Bytes = 2I|Bytes

Indexes

® 64 x 2bits = |6Bytes

Compressed

® 37/Bytes

Uncompressed
® 64 x 3Bytes = 192Bytes

Compression ratio

® |9%

© 2010 Michael Doggett

Next ...

® Juesday and Wednesday

® Assignment 2 marking in Pluto
® Next lecture

® Antialiasing

® TJexture Compression

® Start project

© 2010 Michael Doggett

