
Real-Time Buffer
Compression

Michael Doggett
Department of Computer Science

Lund university

© 2010 Michael Doggett

Project

• 3D graphics project

• Implement 3D graphics algorithm(s)

• C++/OpenGL(Lab2)/iOS/android/3D engine

• Demo, Game

• Proposal - Long paragraph by next
Thursday

• More in the next lecture

© 2010 Michael Doggett

Pixel shader

Vertex shader

Stages we have looked
at so far

Rasterization

FrameBuffer

Z & Alpha

Texture

© 2010 Michael Doggett

Pixel shader

Vertex shader

Today’s stages of the
Graphics Pipeline

Rasterization

FrameBuffer

Z & Alpha

Texture
Z and Color

Compression

© 2012 Michael Doggett

Z & Alpha Performance

• Recall Memory Bandwidth determines
performance

• Both units connect directly to memory

• Computation power of GPUs and CPUs
increasing more rapidly than memory
bandwidth

• Compression reduces the data before we
transfer it

© mmxvi mcd

• Dynamic Random Access Memory

• Must have power and be refreshed to maintain it

• Discrete GPU memory - Fast and reasonably priced

• Many different types : SDRAM, VRAM, SGRAM, etc.

• Multiple improvements of data transfer

• DDR - sends data on both low-to-high and high-to-low

• QDR, then GDDR (Graphics DDR) versions 2, 3, 4, 5

• HBM - High Bandwidth Memory

• 3D-stacked DRAM

DRAM overview

© 2012 Michael Doggett

PC memory
architecture

224GB/s GDDR5

8GB/s
PCIe2 16x

NVIDIA GTX980

Integrated CPU and GPU
Intel Sandy/Ivy Bridge/
Haswell/Skylake
AMD Fusion GPU

CPU

GPU

System
DRAM

Graphics
DRAM

12.8GB/s

© mmxiii mcd

Mobile Memory
Architecture

Based on 2014 iPhone5S

GPU

System DRAM
1GB

Storage :
Flash Memory

16-64GB

~5 GB/s

CPU

Phone

Video
Cache

source http://anandtech.com/show/7335/the-iphone-5s-review

http://anandtech.com/show/7335/the-iphone-5s-review

© 2008 Tomas Akenine-Möller

Back to  
Graphics Hardware algorithms

© 2008 Tomas Akenine-Möller

Why depth buffer?

[Slide courtesy of John Owens]

The ”brute-force approach” is depth buffering (aka Z-buffering):
It won over sorting-polygon-methods because memory became
ridiculously inexpensive...

© 2008 Tomas Akenine-Möller

Depth buffer bandwidth
• Still could be quite expensive!
• Zmin/Zmax-culling helped (previous lecture)

• Real-Time Buffer Compression can help
reduce
–Depth buffer bandwidth
–Color buffer bandwidth
–Other buffers...

© 2008 Tomas Akenine-Möller

Real-Time Buffer Compression

• Techniques that are or may be used in
GPUs...

• Basic idea:
–Lots of coherency (correlation) between pixels
–Use that to compress buffer info
–Send compressed buffer info over the bus
–Special hardware handles compression and

decompression on-the-fly
–Must be lossless!!

© 2008 Tomas Akenine-Möller

General Compression System

GPU
GPU Memory

© 2008 Tomas Akenine-Möller

Compression System

• Works on a tile basis
–Eg 8x8 pixels at a time

• Cache is important!
–Do not want to decompress tile for every fragment

that needs access to values in that tile
• Tile table store ”per-tile info”:

–E.g., which compression mode is used
–Example: 00 is uncompressed, 01 is compressed

at 25%, 10 is at 50%, 11 is cleared
–Always needs one uncompressed mode as a

fallback

© 2008 Tomas Akenine-Möller

Example
• Read request ! ctrl block
• Checks cache

–If there, deliver immediately
–If not

• Evict one tile from cache by attempting to compress
info, and sending resulting representation, update tile
table for that tile

• Check tile table for requested tile, and
• Read appropriate amount of bytes
• Decompress (or send cleared info without reading, or
in case of data being uncompressed, no
decompression needed)

• Done

© 2008 Tomas Akenine-Möller

Dirty bit
• Each tile in cache has one bit for this
• When new info has been written to a tile in cache,

set dirty bit=1
• When a tile in the cache needs to be evicted, check

dirty bit
– If =0, information in external memory is up to date ! no

need to write back!
– If =1, attempt to compress, and send to external

memory
• Saves a lot when no updates

–Example: particle systems – do not write depth!

© 2008 Tomas Akenine-Möller

Depth buffer compression
• Hard to get accurate information about this
• Looking at patents we can extract some

ideas
• Three techniques:

–Depth offset compression
–DPCM compression
–Layered plane equation compression

© 2008 Tomas Akenine-Möller

Depth buffer compression
• Simplest buffer to compress

–Highly coherent info (big triangles WRT tile size)
–Depth is linear in screen space

• Depth cache and depth compression helps Zmax
update for Zmax-culling

• Depths, d(i,j) per tile,
– i is in [0, w-1], j is in [0, h-1]
–Min depth value is 00...00b (all zeroes, e.g. 24 bits)
–Max depth value is 11...11b (all ones)

• i.e., we can use integer math

© 2008 Tomas Akenine-Möller

Depth offset compression (1)
• Identify a set of reference values, rk,

–and compress each depth as an offset with
respect to one reference value

• Easiest to only use two reference values
–Use Zmin and Zmax of tile!
–Rationale: we have two layers

• One with depths close to Zmin and
• one with depths close to Zmax

© 2008 Tomas Akenine-Möller

Visually, this means...

• Can encode if all z-values are in the gray
regions

20

© 2008 Tomas Akenine-Möller

Depth offset compression (2)
• Use an offset range of t=2p

• Can use offset, o(i,j), per pixel as:

• If at least one pixel, (i,j), cannot fulfil the
above, the tile cannot be compressed!

• Info to store (if compression possible):
–Zmin and Zmax
–Plus wxh p-bit values

© 2008 Tomas Akenine-Möller

Depth offset compression (3)
• Example with following assumptions:

–8x8 pixels per tile
– t=28 means 8 bits per offset, o
–24 bits depth ! Zmin and Zmax has 24 bits each

• Storage (uncompressed: 8x8x3=192 bytes):
–1 bit per pixel to indicate whether offset to Zmin or Zmax !

8x8x1 bits= 8 bytes
–Offsets: 8x8x8 bits= 64 bytes
–Zmin & Zmax: 6 bytes (might be on-chip though)
–Total: 8+64+6=78 bytes ! 100*78/192=41% compression

© 2008 Tomas Akenine-Möller

Less expensive implementation

• Only possible to compress if all depths in a
tile are in gray regions

• There are some extensions to this that
makes the hardware simpler!

• Make the offset computation inexpensive!
–Currently costs an adder in HW

© 2008 Tomas Akenine-Möller

Inexpensive offsets...
• Instead of storing exactly Zmin and Zmax,

store only m most significant bits (MSBs)
–Call these truncated values, umin and umax

• Offset is now simply the k-m least significant
bits of depth (no add needed)

umin

m bits

Offset, o(i,j)

k-m bits

k bits (eg 24 bits)

© 2008 Tomas Akenine-Möller

Disadvantage of cheap offsets, and a
solution

• Only values in dark gray area can be coded ! loss
of compressibility!

• Simple solution: use one more bit per pixel ! four
reference values:
• umin, umin+1, umax-1 and umax

© 2008 Tomas Akenine-Möller

Decompression hardware
• Very simple

© 2008 Tomas Akenine-Möller

Compression ratio with inexpensive
variant

• Slightly worse ! 44% instead of 41%
• But, range of offsets is larger!

–Best case: range is twice as large
–Worst case: range is only one depth value larger
–Average case: range is about 50% larger!
–So more tiles can be compressed, but still costs

more

© 2008 Tomas Akenine-Möller

DPCM Compression
• DPCM=differential pulse code modulation
• Basic idea: we usually have linearly varying

values in tile
–Second derivative of linear function is zero!
–However, we have discretized function, so need

discretized ”second derivatives”

© 2008 Tomas Akenine-Möller

DPCM: Focus on one column of depths

• For linear functions, the Δs’s will be close to 0
• Reconstruction is simple (next slide)

d0

d1

d2

d3

d4

d5

d7

d6

Compute slopes,

si= di -di-1

d0

s1

s2

s3

s4

s5

s7

s6

Compute differential

slopes, Δsi= si -si-1

d0

s1

Δs2

Δs3

Δs4

Δs5

Δs7

Δs6

© 2008 Tomas Akenine-Möller

DPCM reconstruction
• From definition, we get:
• Only s1 is known, but:

© 2008 Tomas Akenine-Möller

Process each column independently

• Not ideal: still many d’s and s’s
• Process first two rows similarly !

© 2008 Tomas Akenine-Möller

DPCM: How to store this?
• One depth, d, two slopes, s, and 61 Δs
• The Δs are small, in [-1,+1] inside triangle
• Use two extra bits per pixel:

–00: add 0
–01: add +1
–10: add -1
–11: use as escape code to handle extraordinary cases...

• Best case compression (no escapes at all):
–24 bits + 25 +25 +8x8x2 ~= 25 bytes (13% ratio)
– If a single triangle covers entire tile

• Do not need the 11-escape case then though...

© 2008 Tomas Akenine-Möller

DPCM: common case
• Single column:

–Depths:1,2,3,4,8,10,12,14
–Slopes: 1,1,1,4,2,2,2
–Diff slopes: 0,0,3,-2,0,0

• Two escape codes needed per column to change
from one plane eq (tri) to another
–Becomes expensive! 40% compression ratio

• Solution: encode from the top & down and from
bottom & up
–Store also where transition happens
–Gives about 20% compression ratio!
–Might be possible to use fewer bits per slope
–Can only handle two plane equations per tile
–Still does not use escape

© 2010 Michael Doggett

Plane Equation Compression

• Each triangle can be represented as a plane

• For every triangle in a tile store the triangle’s plane equation

• Store one depth in center of tile, and an x-slope (dz/dx),
and y-slope (dy/dz) across the tile

• For every pixel in the tile store an index to find the matching
plane equation

• Works great for multisample!

• Random access

• only decompress necessary pixels

• More info

• [VanHook07] US Patent 7,242,400

© 2010 Michael Doggett

Plane Equation Compression

• Plane 0 : Zc, x slope, y slope

• Plane 1 : Zc, x slope, y slope

• Plane 2 : Zc, x slope, y slope

• Plane Equations

• 3 x (3 + 2 + 2)Bytes = 21Bytes

• Indexes

• 64 x 2bits = 16Bytes

• Compressed

• 37Bytes

• Uncompressed

• 64 x 3Bytes = 192Bytes

• Compression ratio

• 19%

2 2 2 2 2 2 2 2

1 2 2 2 2 2 2 2

1 1 2 2 2 2 2 0

1 1 1 2 2 2 0 0

1 1 1 1 2 0 0 0

1 1 1 1 0 0 0 0

1 1 1 0 0 0 0 0

1 1 0 0 0 0 0 0

© 2008 Tomas Akenine-Möller

Color Buffer Compression
• Could use offset compression for R, G, and

B separately (perhaps)
• Could use JPG’s non-lossy algorithms
• Can do simple color compression for multi-

sample anti-aliasing
• Can compress clear color
• Is generally very difficult due to restrictions

–Cannot be lossy
–Must decode very fast for alpha blending

© 2008 Tomas Akenine-Möller

Conclusion
• Compression reduces bandwidth further

–Several options for depth
• For more details read Notes chapter 7

–Harder for color
–Needs cache
–Needs fallback for non-compressed mode

© 2010 Michael Doggett

Next ...
• Today and Friday

• Assignment 2 marking in Uranus

• Next lecture

• Antialiasing

• Texture Compression

• Start project

• Next week :

• GPU Architecture

• Graphics Architecture and OpenCL

