
Performance Analysis
and

Culling Algorithms
Michael Doggett

Department of Computer Science
Lund university

Pixel shader

Vertex shader

Stages we have looked
at so far

Rasterization

FrameBuffer

Z & Alpha

Texture

Pixel shader

Vertex shader

Today’s stages of the
Graphics Pipeline

Rasterization

FrameBuffer

Z & Alpha

Texture

Pixel shader

Vertex shader

Today’s stages of the
Graphics Pipeline

Rasterization

FrameBuffer

Z & Alpha

Texture

Rasterization uses Z
hardware to
determine visibility
before Pixel Shader

MD21

Overview

• Aspects of GPU Performance

• Rasterization Equation

• Hierarchical Z Culling

GPU Performance

• GPU compute

• TFLOPS - Tera (1012) floating-point
operations per second

• total FLOPS = cores x clock x FLOPs/cycle

• FLOP is a 32bit FP add or multiply

• Memory Bandwidth

• Graphics Hardware

• Number of units

• Algorithms - Compression
MD15

Pixel shader

Vertex shader

Rasterization

FrameBuffer

Z & Alpha

Texture

ROPs

GPU example
GeForce GTX 980 Ti

(2014)

• GPU Compute

• 2816 cores x 1075 MHz clock x 2 FLOPS/cycle

• 5632 single precision GFLOPS (5.6 TFLOPS)

• Memory BW : 336GB/s

• Graphics Hardware :

• 176 Texture units and 96 Render output units (ROPs)

MD15

MD21

GPU Performance
• Hardware specifications

• Clock speed, memory size and speed, number of processing units

• Code

• Algorithm complexity

• Parallel performance

• Amdahl's law - parallelisation is only as effective as how much it parallelises

• Data locality

• Data needs to be close to computation unit

• Data movement is expensive in time and energy

“It’s the Memory, Stupid!”
• Memory bandwidth creates an upper limit for Graphics

• GPU graphics performance has increased ~16x in last 10 years (’13-’22)

• GPU compute performance increased ~1000x from 2000 to 2010

• From

• Radeon7500 (2001) 1.84 GigaOPS (16?bit fixed point)

• Radeon5870 (2009) 2.72 TeraFLOPS (32bit floating point)

• Radeon R9 290X (2013) 5.6 TeraFLOPS (32bit FP)

• Nvidia GeForce 980 (2014) 4.6 TeraFLOPS (32bit FP)

• Nvidia Tesla V100 (GV100) (2017) 15 TeraFLOPS (32bit FP)

• Nvidia Ampere (RTX3090) (2020) 35 TeraFLOPS (32bit FP)

• Nvidia Ada (RTX4090) (2022) 82 TeraFLOPS (32bit FP)

• Memory operations use power

• Power is limited

• Especially true for Mobile devices

• Thermal management is also a problem

Richard Sites, Microprocessor Report 1996

Performance
Optimization

• Reduce load on a particular unit

• if performance increases, that is the bottleneck

• disable textures, alpha blending

• replace shaders with single computation

MD15

© mmxvii mcd

GPU Performance measured
using Actual Games

• Games

• Ars Technica 3080 review uses

• MS Flight Simulator, AC Odyssey, Far Cry 5, RDR2, GTA V,
Hitman 2, Control, Minecraft RTX, Wolf Youngblood, Shadow of
the Tomb Raider

• Synthetic benchmarks

• Triangles/second

Minecraft RTX

© 2009 Tomas Akenine-Möller 12

Theoretical performance analysis
of rasterizer (1)

• Some simple, useful formulae
• Useful tools when you should buy someone’s

hardware...
–Or investigate whether it is worth trying out particular

algorithm
• New term: depth complexity

–Measured per pixel
–The number of triangles that overlap with a pixel (even

though each triangle need not write to the pixel)
–However, often say that a scene has an average depth

complexity of, e.g., d=4

© 2009 Tomas Akenine-Möller 13

What is depth complexity?

[Slide courtesy of John Owens]

© 2009 Tomas Akenine-Möller 14

Theoretical performance analysis
of rasterizer (2)

• New term: overdraw
–Measured per pixel as well
–How many times we write to a pixel
–Less than or equal to depth complexity, o<=d

• Statistical model of overdraw, o:

• 1: first triangle is always written
• ½: second triangle has 50% of being in front of

previous triangle
• 1/3: third triangle has a 33% chance of being in front

of previous two triangles, and so on.

Example:
d=4 gives
o=2 (approx)

© 2009 Tomas Akenine-Möller 15

Theoretical performance analysis
of rasterizer (3)

• Tr is texture read
–32 bits per texel, trilinear mipmapping needs 8

texels  32 bytes per access
• Zr and Zw are depth (Z) read and writes

–16, 24, or 32 bits
• Cr and Cw are color read and writes

–16, 24, or 32 bits
• Good formula for bandwidth, b, per pixel:

Not good!... Upper bound, though.

© 2009 Tomas Akenine-Möller 16

Theoretical performance analysis
of rasterizer (4)

• Need to take overdraw into account...
–Fragments that do not pass the depth test, do not

need to: access texture, write depth, write color

• Recall, d=4  o=2 (approx)
–Significant difference (assume 3 bytes per color and

depth):
• b=4*3 + 2*(3 + 3 + 32) = 88 bytes per pixel
• b=4*(3 + 3 + 3 + 32) = 164 bytes per pixel (old formula)

Note: Sometimes (Late Z), the texture lookup is before the depth test!

© 2009 Tomas Akenine-Möller 17

Theoretical performance analysis
of rasterizer (5)

• Need to take texture cache into account too
–With miss rate of, m, e.g., m=0.2 for 20% miss rate

• Significant difference again:
–Miss rate m=0.2:

• b=4*3 + 2*(3 + 3 + 0.2*32) = 37 bytes per pixel
• b=4*3 + 2*(3 + 3 + 32) = 88 bytes per pixel
• b=4*(3 + 3 + 3 + 32) = 164 bytes per pixel

Note: can have many more texture accesses per fragment though...

R
as

te
riz

at
io

n
eq

ua
tio

n

© 2009 Tomas Akenine-Möller 18

What else needs to be improved?
• b=4*3 + 2*(3 + 3 + 0.2*32) = 37 bytes per pixel
• Texture bandwidth (2*0.2*32=12.8 bytes): ok

–Can be reduced further with compression:
• At 4 bits per texel: 2*0.2*8*4/8=1.6 bytes...
• Does not work always though: e.g. render-to-texture

• Color buffer (2*3=6 bytes): ok, not bad
• Depth buffer (4*3 + 2*3=18 bytes)

–The worst bandwidth consumer at this point
• Reads are worse than writes...

–This lecture: reduce depth bandwidth using culling
algorithms

–Next lecture: compression of buffers

© 2009 Tomas Akenine-Möller 19

Culling and compression
algorithms

• So far, we have seen texture caching and
texture compression as good ways of
reducing usage of texture bandwidth

• What else can be done?
–Culling:

• Zmax-culling and Zmin-culling
• Object culling

–Compression:
• Depth buffer compression
• Color buffer compression?

© 2009 Tomas Akenine-Möller 20

Hierarchical Z
Zmax vs Zmin

• Left: small triangle is behind big triangle
• Right: small triangle is in front of big triangle
• Use screen tiles to cull parts of triangle

© 2009 Tomas Akenine-Möller 21

Zmax-culling (1)
• What about a fragment that fails the depth test (if test

is less_or_equal)?
–i.e., the fragment is occluded (not visible)

• Ideally, we do not want to process them at all!

• We know that d>=o, so reads consume more than
writes

• Zmax-culling:
– Very simple technique
– Culls occluded fragments on a tile basis (tiled traversal is a must!)
– Works without user intervention, i.e., fully automatic

AMD and NVIDIA has
some form of Zmax-culling

in their hardware

© 2009 Tomas Akenine-Möller 22

Zmax-culling example

• Now render red triangle

Not culled

Culled

Culled

Not culled

View direction

• Cull when Z_tri_min > Z_tile_max

MD22

•Each tile is w x h pixels in size, with a Z (depth) at each pixel

•Store maximum of tile’s Z values (Z_tile_max)

• Together all Z_tile_max values look like a low resolution Z buffer

•When rasteriser performs tiled based traversal, at each tile

• Compute smallest Z value from triangle in current tile (Z_tri_min)

• Check if (Z_tri_min > Z_tile_max)

• If true, cull tile, avoid Z reads

Zmax culling

MD22

•Approximate values will work

• Must use conservative testing

• Computed Zmin must be less than actual Zmin

•Many ways to compute triangles Zmin value

1. Find minimum triangle vertex

• Ideal if triangle is inside tile

• Bad if triangle is large, and much bigger than tile

2. Find minimum tile corner values

• Ideal if triangle covers the whole tile

• Bad if triangle is small, and worse if triangle is parallel to view direction

3. Find minimum of triangle clipped to tile

• Expensive computation

4. Take maximum of 1 & 2

How to compute minimum Z value in Tile?

MD22

•Store Tile Zmax values in on-chip cache

• Fast and avoids adding memory bandwidth

• If too big for on-chip memory, a cache is a good option

•Zmax update

• Only gets smaller

• Must check all Z values in tile, find maximum

• Z compression helps reduce cost of update

Tile Zmax storage and update

© 2009 Tomas Akenine-Möller 26

Zmax-culling example
(same example again)

• Now render red triangle

Not culled

Culled

Culled

Not culled

• Zmax culling saves Read pixel bandwidth

• Cull when Z_tri_min > Z_tile_max

Culled

Not culled

Not culled

Culled

© 2009 Tomas Akenine-Möller 27

Zmin-culling example

• Red triangle is currently being rendered

• Cull when Z_tri_max < Z_tile_min

MD22

•When rasteriser performs tiled based traversal, at each tile

• Compute largest Z value from triangle in current tile (Z_tri_max)

• Use same approach as for Z_tri_min

• Check if (Z_tri_max < Z_tile_min)

• If true, all pixels pass, avoid Z reads

• All pixels are in front of everything in the current tile

• Store Z_tile_min in on-chip cache (same as Z_tile_max)

• Z_tile_min update

• If any Z is < Z_tile_min, update

• Much easier than Z_tile_max

Zmin culling

© 2009 Tomas Akenine-Möller 29

Zmin-culling example again

• Red triangle is currently being rendered

Culled

Not culled

Not culled

Culled

• Cull when Z_tri_max < Z_tile_min

© 2009 Tomas Akenine-Möller 30

Can Zmin work better than Zmax?
• Back to the equations, depth buffer

bandwidth, Bd:

These fragments fail the depth test
i.e., ”occluded fragments”

These fragments pass the depth test
i.e., ”visible fragments”

Zmax-culling can potentially
avoid these reads

Zmin-culling can potentially
avoid these reads

• d-o fragments for Zmax, o for Zmin-culling
• There are more fragments for Zmax when:

© 2009 Tomas Akenine-Möller 31

Zmin vs Zmax
• For d=4 we get o=2 (approx), and hence we

will get:
–more fragments for Zmax when d>4, and
–more fragments for Zmin when d<4

• Start rendering of a scene:
–Depth complexity is zero for all tiles
–Render triangles, and depth complexity starts to

build up. Zmin-culling works immediately here
–When depth complexity is >4, Zmax-culling starts

to work better than Zmin-culling

© 2009 Tomas Akenine-Möller 32

Zmin & Zmax
• Both algorithms can only get rid of depth reads!

–[Or for architectures which always do texturing before
per-pixel depth reads (Late Z), you get rid of texturing
and pixel shader executions as well]

• Both should be implemented for best performance,
however, for low depth complexity Zmin will pay off
the most

• Zmin is also simpler to implement

• Normally, depth is 16, 24, or 32 bits per pixel
–A conservative value for Zmin and Zmax works well:

• 8 bits might be enough
• Trade-off though...

© 2009 Tomas Akenine-Möller 33

Object Culling
• Can cull an entire object at a time

–Can save bandwidth from CPU to GPU, vertex
processing, and fragment processing!

• Needs user intervention, i.e., not automatic
• User can issue an ”occlusion query”:

–render a set of triangles, count the fragments that passes
the depth test

–i.e. glBeginQuery(GL_ANY_SAMPLES_PASSED, query);
• Common use: render bounding box of complex object

(character, e.g.)
–If no fragments passes, then entire BBOX is hidden
–Means: entire object is hidden too
–I.e, do not render object!

Next ...

• Next week:

• Buffer compression and Antialiasing

• Lab 2 Deferred Shading

• Think about project!

