
Shading

Michael Doggett
Department of Computer Science

Lund university



Pixel shader

Vertex shader

Stages we have looked 
at so far

Rasterization

FrameBuffer

Z & Alpha

Texture



Pixel shader

Vertex shader

Today’s stages of the 
Graphics Pipeline

Rasterization

FrameBuffer

Z & Alpha

Texture



© mmxvi mcd

Overview
• What effects can we create with programmable shaders?

• Shader trees

• Physically Based Shading

• Glass

• Skin

• Ambient Occlusion

• Surface details

• Cartoons

• Non-photorealistic rendering

• Glow, Fur



© 2011 Michael Doggett

Resources
• GPU GEMS 1, 2, 3 

–All freely available on nvidia’s web page 
– https://developer.nvidia.com/gpugems/GPUGems/gpugems_pref01.html 

• Shader X 
–Book series similar to GPU GEMS 
–Latest version called GPU Pro 

• Real-Time Rendering 
–Text book with detailed description of all aspects of real-time 

effects 
• Search the web for lots of example code, blog posts 

and game development pages 
• WebGL based shaders 

–www.shadertoy.com

5

https://developer.nvidia.com/gpugems/GPUGems/gpugems_pref01.html
https://www.shadertoy.com/


MD22

•Very old technique  

• First used in Quake 

•Static

Light Maps

Images from https://www.flipcode.com/archives/Light_Mapping_Theory_and_Implementation.shtml

https://www.flipcode.com/archives/Light_Mapping_Theory_and_Implementation.shtml


Half-Life 2 Lighting

Gary McTaggart, Valve, “Half-Life2 Shading/Valve Source Shading” GDC 2004



*

*

Radiosity Normal 
Mapping Shade Tree

+

NormalNormal

LightmapsLightmaps

Cube MapCube Map

Specular Specular 
FactorFactor

AlbedoAlbedo

See slides for Vertex and Pixel shaders
Gary McTaggart, Valve, “Half-Life2 Shading/Valve Source Shading” GDC 2004

Half-Life 2 Lighting



© mmxvi mcd

Physically-Based 
Shading

• Material shaders had become very complex

• Better to have consistent materials

• Something that just works

• PBS uses energy conservation

• Creates a framework to understand and 
reason about materials

• Used in both Real-Time and Offline

Image courtesy Michal Iwanicki and Angelo Pesce, 
“Approximate models for physically based rendering”, 
PBS course 2015



© mmxvi mcd

• Material shaders had become very complex

• Better to have consistent materials

• Something that just works

• PBS uses energy conservation

• Creates a framework to understand and 
reason about materials

• Used in both Real-Time and Offline

Physically-Based 
Shading



© mmxvi mcd

The Rendering 
Equation

• fr is the Bidirectional Reflectance 
Distribution Function (BRDF)

Lo = Le +

Z

⌦
Li · fr · cos ✓ · d!



© mmxvi mcd

Bidirectional Reflectance 
Distribution Function

• Microfacet surface model

• Microgeometry changes how light is reflected 
(and refracted)

• Rougher surfaces create blurrier reflections

• F(l,h) is the Fresnel term

• More about this later



© mmxvi mcd

Bidirectional Reflectance 
Distribution Function

• G() - Geometry Function

• Chance that a micro facet is shadowed and/or masked

• Several options in the literature

• D() - Normal Distribution Function

• Distribution of normals around a given direction (halfway vector)

• Size and shape of the spectral highlight

• Many possible equations



© mmxvi mcd

Disney BRDF

Fig21. Wreck-It Ralph 2012.
Image courtesy Brent Burley, “Physically-Based Shading at Disney”, 2012



© mmxvi mcd

• The BRDF is defined by a base color, and 10 scalar 
parameters:

• Subsurface, Metallic, Specular, Specular tint, Roughness, Anisotropic, 
Sheen, Sheen tint, Clearcoat, Clearcoat gloss

• BRDF Explorer (demo?)

• Can explore many different BRDFs and example GLSL code 
(in .brdf files)

• e.g. disney.brdf or https://github.com/wdas/brdf/blob/master/src/brdfs/
ashikhman_shirley.brdf

• More info : https://www.disneyanimation.com/technology/brdf.html

• Paper : Physically-Based Shading at Disney : https://disney-
animation.s3.amazonaws.com/library/s2012_pbs_disney_brdf_notes_v2.pdf

Disney BRDF

Fig.19 From shiny metallic gold to blue rubber
Image courtesy Brent Burley, “Physically-Based Shading at Disney”, 2012

https://github.com/wdas/brdf/blob/master/src/brdfs/ashikhman_shirley.brdf
https://github.com/wdas/brdf/blob/master/src/brdfs/ashikhman_shirley.brdf
https://github.com/wdas/brdf/blob/master/src/brdfs/ashikhman_shirley.brdf
https://www.disneyanimation.com/technology/brdf.html
https://disney-animation.s3.amazonaws.com/library/s2012_pbs_disney_brdf_notes_v2.pdf
https://disney-animation.s3.amazonaws.com/library/s2012_pbs_disney_brdf_notes_v2.pdf


© mmxvi mcd

Disney BRDF

Fig. 16 : Varying 
each parameter.
Image courtesy 
Brent Burley, 
“Physically-Based 
Shading at 
Disney”, 2012



© mmxvi mcd

MERL 
BRDF 

database
of 

measured 
materials

SGD implementation 
of all MERL materials 
at shadertoy : https://
www.shadertoy.com/
view/XssGzf

https://www.shadertoy.com/view/XssGzf
https://www.shadertoy.com/view/XssGzf
https://www.shadertoy.com/view/XssGzf
https://www.shadertoy.com/view/XssGzf


MD20

Real-Time PBS
• Cook-Torrance BRDF has a diffuse and specular part 

• Direct lighting (Point lights) are a single direction over 
hemisphere  

• Image Based Lighting (Environment/Cube maps) 

• Diffuse approximated with pre-filtered Irradiance Cube Map 

• Specular can use Epic’s Split Sum approximation 

• Indirect specular reflections using pre-filtered Cube 
Map with mip levels for different roughness 

• Pre-computed BRDF in 2D texture LUT using N·V and 
roughness 

• Full details : https://learnopengl.com/PBR/Theory

18

https://learnopengl.com/PBR/Theory


© mmxvi mcd

PBS more info

• https://learnopengl.com/PBR/Theory 

• Physically Based Shading at ShaderToy https://www.shadertoy.com/view/4sSfzK

• “Physics and Math of Shading”, Naty Hoffman

• youtube : https://youtu.be/j-A0mwsJRmk

• pdf : http://blog.selfshadow.com/publications/s2015-shading-course/
hoffman/s2015_pbs_physics_math_slides.pdf

• PBS course at SIGGRAPH

• 2020: http://blog.selfshadow.com/publications/s2020-shading-course/ 
and ’17, ’16, ’15, ’14, ’13, ’12, ’10, lots of material

https://learnopengl.com/PBR/Theory
https://www.shadertoy.com/view/4sSfzK
https://youtu.be/j-A0mwsJRmk
http://blog.selfshadow.com/publications/s2015-shading-course/hoffman/s2015_pbs_physics_math_slides.pdf
http://blog.selfshadow.com/publications/s2015-shading-course/hoffman/s2015_pbs_physics_math_slides.pdf
http://blog.selfshadow.com/publications/s2015-shading-course/hoffman/s2015_pbs_physics_math_slides.pdf
http://blog.selfshadow.com/publications/s2020-shading-course/


© 2009 Tomas Akenine-Möller 20

Refraction effects
• Many different techniques 
• Increases level of realism a bit (if done well) 
• Hacky technique: 

–Refract only ray at first intersection 
–This is incorrect... 
– but simple!



© 2009 Tomas Akenine-Möller 

Refraction using 
Wyman’s technique 
(not part of the course)

21

Refraction comparison with better techniques

Images courtesy of Chris Wyman

Refraction using 
one interface

Ray tracing



© 2009 Tomas Akenine-Möller 22

Refraction (cont’d)
• Back to simplest technique: 

–Refract at first intersection 
• Add Fresnel reflection for improved realism 

–Reflection term is bigger at grazing angles 
–Perpendicular to the surface you see through 
–Parallel to the surface you see reflection 
–Especially so for dielectrics (transparent): glass, 

plastics, water



© 2009 Tomas Akenine-Möller 

Fresnel (cont’d)
–Depends on: Coefficient of extinction, Incident 

angle, Index of refraction 

23

v is the view vector 
h is the halfway vector
n is the index of refraction



© 2009 Tomas Akenine-Möller 24

Fresnel (cont’d)
• F describes the reflectance at a surface at 

various angles

Im
ag

es
 c

ou
rte

sy
 

 o
f S

te
ve

 W
es

tin
M

et
al

s

D
ie

le
ct

ric
s



MD22

•Sometimes called “Schlick” approximation 

•v is the view vector 

•n is the normal 

•R0 is reflectance when v.n=0 

•Multiple reflected value by F 

• add to refracted value

Fast Fresnel Approximation

Images courtesy Steve Westin

Metal

Glass



© 2009 Tomas Akenine-Möller 26

Skin rendering:  
subsurface scattering hacks

• We cheat to get real-time 
performance 
–Though, more sophisticated real-

time algorithms exist 
• Ideally: subsurface scattering 

–Photons enter material, bounces 
around inside material, and then 
exits at another point 

• Hacks: 
–Wrapping + color shifting 
–Depth maps 
–Texture space diffusion

Rendered using NVIDIA’s Gelato

Im
ag

e 
co

ur
te

sy
 o

f H
en

rik
 W

an
n 

Je
ns

en



© mmxiii mcd

Approximating Skin

• Wrap lighting

• Lighting wraps around 
the object beyond where 
it would normally go dark

”Real-time Approximations To Subsurface Scattering”, 
Simon Green, GPU Gems, 2004



© mmxiii mcd

Approximating Skin

• Wrap lighting

• Blend in red as the lighting approaches zero

”Real-time Approximations To Subsurface Scattering”, 
Simon Green, GPU Gems, 2004



© 2009 Tomas Akenine-Möller 29

Subsurface scattering using 
depth maps (cont’d)



MD21

Subsurface scattering using 
Depth Maps

• Compute object thickness from camera’s POV 

• Use thickness to look up a color for the skin

30



MD21

• Render back faces into FP16 buffer 

• Render front face, fetch back face depths from buffer 

• Compute distance, scale to [0,1] 

• Look up color

31



MD21 32



MD21 33



MD21 34



MD21 35



© 2011 Michael Doggett

Ambient Occlusion

36

• How much ambient light hits 
a point? 

• Calculate the local occlusion 
around a point in the scene

2D cross section of 3D hemisphere



© 2011 Michael Doggett

Screen Space Ambient 
Occlusion (SSAO)

37

• Compute points on a sphere 
• Compare z and count passing points 
• Divide by number of points in hemisphere

Mittring07, “Finding Next Gen-CryEngine2”, ARTRi3DGG, SIGGRAPH course

Yellow - Surface point 
Red - Failing point 
Green - Passing point

From RTR3 p. 383



© 2011 Michael Doggett

Screen Space Ambient 
Occlusion (SSAO)

38

From RTR p. 384

AO albedo

Left +
specular +
shadows

AO +
albedo



© 2012 Michael Doggett

Overview of Screen-
Space AO Methods

McGuire et al., “Scalable Ambient Obscurance”, High Performance Graphics 2012



© 2012 Michael Doggett

Scalable Ambient 
Obscurance

McGuire et al., “Scalable Ambient Obscurance”, High Performance Graphics 2012



© 2011 Michael Doggett

Adding surface details
• Normal/Bump mapping 
• Displacement mapping  
• Parallax mapping 
•

41



© 2011 Michael Doggett

Parallax Occlusion Mapping

42
courtesy http://ati.amd.com/developer/gdc/2006/GDC06-Tatarchuk-Parallax_Occlusion_Mapping.pdf

http://ati.amd.com/developer/gdc/2006/GDC06-Tatarchuk-Parallax_Occlusion_Mapping.pdf


© 2011 Michael Doggett

Per-Pixel Displacement 
Mapping

• Extrude triangles up from the surface 
• Ray trace through the displacement map

43

“Hardware Accelerated Per-Pixel Displacement Mapping”, Hirche et. al., Graphics Interface 2004

http://fileadmin.cs.lth.se/graphics/research/papers/mike/Hirche-2004-Hardware.pdf


© 2009 Tomas Akenine-Möller 44

Toon Shading

• Characteristics?

Dark outlines of 
important 
silhouettes

Few shades in 
shading

• Why not do it using shaders?



© 2009 Tomas Akenine-Möller 45

Some Cartoon renderings

© 2009 Tomas Akenine-Möller 

Flock

Cocoon

Townscaper



© 2009 Tomas Akenine-Möller 46

Few shades...
• Simple  

–Two slightly different ways of doing it

cos(α)=dot(n,l)

• Let different intervals on 
cos(α) correspond to 
different colors 
– Do it using computations or 

a 1D texture

light
normal

α



© 2009 Tomas Akenine-Möller 47

Few shades (cont’d)
• A bit more complex example 

–Uses entire Phong shading equation, with step 
functions to do thresholding

• Filtering:  
– if you use 1D textures, you can just 

turn on mipmapping 
–If you compute: use smoothstep()

smoothstep(min,max,x)



© 2009 Tomas Akenine-Möller 48

Silhouette rendering
• In screen space: 

– Use edge detection 
– On both depth buffer and normal buffer 
– Finds both silhouettes and important ”internal silhouettes” (creases)

Depth buffer Edges derived 
from depth buffer

Normal buffer Edges derived 
from normal 
buffer

Combination: 
normal + depth

Images courtesy of Aaron Hertzmann



© 2009 Tomas Akenine-Möller 49

Silhouette rendering (cont’d)
• Procedural geometry silhouetting 
• Basic idea: 

–Render frontfaces as usual, and then 
–Render backfaces so the silhouettes become visible 

eye

Front 
facing

Back 
facing translate

Backface visible

Problem: thickness 
depends on orientation 
of backfacing triangle



© 2009 Tomas Akenine-Möller 50

Silhouettes
• Using enlarged objects technique 

• First pass render front faces

eye

Second pass:

Extruded 
backfaces  
are rendered 
in silhouette 
color

eye

Frontfaces are rendered



© 2009 Tomas Akenine-Möller 51

Non-photorealistic rendering
• Cartoon rendering is one example of this

Technical 
illustration

“Real-Time Hatching”, E. Praun et. al., SIGGRAPH 2001



© 2009 Tomas Akenine-Möller 52

Glow
• Render object in ”glow color” to separate 

texture 
• Apply low-pass blur filter 
• Blend with rendering of object

“Real-Time Glow”, Greg James, John O’Rorke, 
Chapter 21, GPU Gems

http://http.developer.nvidia.com/GPUGems/gpugems_ch21.html
http://http.developer.nvidia.com/GPUGems/gpugems_ch21.html


© 2009 Tomas Akenine-Möller 53

”Fur” Closeup

Images courtesy of Pixar Inc.



© 2009 Tomas Akenine-Möller 54

Real-time fur rendering

• Render ”inner surface” 
• Render ”fins”, around silhouttes 
• Render many concentric shells, 

semi-transaprent

“Real-Time Fur over Arbitrary Surfaces”, Jerome Lengyel, et. al. I3D 2001

http://jedwork.com/jed/papers/LPFH-fur-2001.pdf


MD22



© 2011 Michael Doggett 56

Next ...
• Work on assignment 1 - Ray Tracing 

–Read the assignment 
–Get the code running 
–Post questions on Discord 

• Next week 
– Monday - Seminar 

• Shadows and Deferred shading - Lab 2 
– Tuesday/Wednesday Lab  

• Assignment 1 - Ray Tracing 
– Thursday - Lecture 

• Performance


