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Overview
• What effects can we create with programmable shaders?

• Shader trees

• Physically Based Shading

• Glass

• Skin

• Ambient Occlusion

• Surface details

• Cartoons

• Non-photorealistic rendering

• Glow, Fur
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Resources
• GPU GEMS 1, 2, 3 

–All freely available on nvidia’s web page 
– https://developer.nvidia.com/gpugems/GPUGems/gpugems_pref01.html 

• Shader X 
–Book series similar to GPU GEMS 
–Latest version called GPU Pro 

• Real-Time Rendering 
–Text book with detailed description of all aspects of real-time 

effects 
• Search the web for lots of example code, blog posts 

and game development pages 
• WebGL based shaders 

–www.shadertoy.com
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https://developer.nvidia.com/gpugems/GPUGems/gpugems_pref01.html
https://www.shadertoy.com/
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•Very old technique  

• First used in Quake 

•Static

Light Maps

Images from https://www.flipcode.com/archives/Light_Mapping_Theory_and_Implementation.shtml

https://www.flipcode.com/archives/Light_Mapping_Theory_and_Implementation.shtml


Half-Life 2 Lighting

Gary McTaggart, Valve, “Half-Life2 Shading/Valve Source Shading” GDC 2004
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See slides for Vertex and Pixel shaders
Gary McTaggart, Valve, “Half-Life2 Shading/Valve Source Shading” GDC 2004

Half-Life 2 Lighting
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Physically-Based 
Shading

• Material shaders had become very complex

• Better to have consistent materials

• Something that just works

• PBS uses energy conservation

• Creates a framework to understand and 
reason about materials

• Used in both Real-Time and Offline

Image courtesy Michal Iwanicki and Angelo Pesce, 
“Approximate models for physically based rendering”, 
PBS course 2015
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• Material shaders had become very complex

• Better to have consistent materials

• Something that just works

• PBS uses energy conservation

• Creates a framework to understand and 
reason about materials

• Used in both Real-Time and Offline

Physically-Based 
Shading
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The Rendering 
Equation

• fr is the Bidirectional Reflectance 
Distribution Function (BRDF)

Lo = Le +

Z

⌦
Li · fr · cos ✓ · d!
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Bidirectional Reflectance 
Distribution Function

• Microfacet surface model

• Microgeometry changes how light is reflected 
(and refracted)

• Rougher surfaces create blurrier reflections

• F(l,h) is the Fresnel term

• More about this later
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Bidirectional Reflectance 
Distribution Function

• G() - Geometry Function

• Chance that a micro facet is shadowed and/or masked

• Several options in the literature

• D() - Normal Distribution Function

• Distribution of normals around a given direction (halfway vector)

• Size and shape of the spectral highlight

• Many possible equations
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Disney BRDF

Fig21. Wreck-It Ralph 2012.
Image courtesy Brent Burley, “Physically-Based Shading at Disney”, 2012
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• The BRDF is defined by a base color, and 10 scalar 
parameters:

• Subsurface, Metallic, Specular, Specular tint, Roughness, Anisotropic, 
Sheen, Sheen tint, Clearcoat, Clearcoat gloss

• BRDF Explorer (demo?)

• Can explore many different BRDFs and example GLSL code 
(in .brdf files)

• e.g. disney.brdf or https://github.com/wdas/brdf/blob/master/src/brdfs/
ashikhman_shirley.brdf

• More info : https://www.disneyanimation.com/technology/brdf.html

• Paper : Physically-Based Shading at Disney : https://disney-
animation.s3.amazonaws.com/library/s2012_pbs_disney_brdf_notes_v2.pdf

Disney BRDF

Fig.19 From shiny metallic gold to blue rubber
Image courtesy Brent Burley, “Physically-Based Shading at Disney”, 2012

https://github.com/wdas/brdf/blob/master/src/brdfs/ashikhman_shirley.brdf
https://github.com/wdas/brdf/blob/master/src/brdfs/ashikhman_shirley.brdf
https://github.com/wdas/brdf/blob/master/src/brdfs/ashikhman_shirley.brdf
https://www.disneyanimation.com/technology/brdf.html
https://disney-animation.s3.amazonaws.com/library/s2012_pbs_disney_brdf_notes_v2.pdf
https://disney-animation.s3.amazonaws.com/library/s2012_pbs_disney_brdf_notes_v2.pdf
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Disney BRDF

Fig. 16 : Varying 
each parameter.
Image courtesy 
Brent Burley, 
“Physically-Based 
Shading at 
Disney”, 2012
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MERL 
BRDF 

database
of 

measured 
materials

SGD implementation 
of all MERL materials 
at shadertoy : https://
www.shadertoy.com/
view/XssGzf

https://www.shadertoy.com/view/XssGzf
https://www.shadertoy.com/view/XssGzf
https://www.shadertoy.com/view/XssGzf
https://www.shadertoy.com/view/XssGzf
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Real-Time PBS
• Cook-Torrance BRDF has a diffuse and specular part 

• Direct lighting (Point lights) are a single direction over 
hemisphere  

• Image Based Lighting (Environment/Cube maps) 

• Diffuse approximated with pre-filtered Irradiance Cube Map 

• Specular can use Epic’s Split Sum approximation 

• Indirect specular reflections using pre-filtered Cube 
Map with mip levels for different roughness 

• Pre-computed BRDF in 2D texture LUT using N·V and 
roughness 

• Full details : https://learnopengl.com/PBR/Theory

18

https://learnopengl.com/PBR/Theory
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PBS more info

• https://learnopengl.com/PBR/Theory 

• Physically Based Shading at ShaderToy https://www.shadertoy.com/view/4sSfzK

• “Physics and Math of Shading”, Naty Hoffman

• youtube : https://youtu.be/j-A0mwsJRmk

• pdf : http://blog.selfshadow.com/publications/s2015-shading-course/
hoffman/s2015_pbs_physics_math_slides.pdf

• PBS course at SIGGRAPH

• 2020: http://blog.selfshadow.com/publications/s2020-shading-course/ 
and ’17, ’16, ’15, ’14, ’13, ’12, ’10, lots of material

https://learnopengl.com/PBR/Theory
https://www.shadertoy.com/view/4sSfzK
https://youtu.be/j-A0mwsJRmk
http://blog.selfshadow.com/publications/s2015-shading-course/hoffman/s2015_pbs_physics_math_slides.pdf
http://blog.selfshadow.com/publications/s2015-shading-course/hoffman/s2015_pbs_physics_math_slides.pdf
http://blog.selfshadow.com/publications/s2015-shading-course/hoffman/s2015_pbs_physics_math_slides.pdf
http://blog.selfshadow.com/publications/s2020-shading-course/
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Refraction effects
• Many different techniques 
• Increases level of realism a bit (if done well) 
• Hacky technique: 

–Refract only ray at first intersection 
–This is incorrect... 
– but simple!
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Refraction using 
Wyman’s technique 
(not part of the course)

21

Refraction comparison with better techniques

Images courtesy of Chris Wyman

Refraction using 
one interface

Ray tracing
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Refraction (cont’d)
• Back to simplest technique: 

–Refract at first intersection 
• Add Fresnel reflection for improved realism 

–Reflection term is bigger at grazing angles 
–Perpendicular to the surface you see through 
–Parallel to the surface you see reflection 
–Especially so for dielectrics (transparent): glass, 

plastics, water
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Fresnel (cont’d)
–Depends on: Coefficient of extinction, Incident 

angle, Index of refraction 

23

v is the view vector 
h is the halfway vector
n is the index of refraction
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Fresnel (cont’d)
• F describes the reflectance at a surface at 

various angles
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•Sometimes called “Schlick” approximation 

•v is the view vector 

•n is the normal 

•R0 is reflectance when v.n=0 

•Multiple reflected value by F 

• add to refracted value

Fast Fresnel Approximation

Images courtesy Steve Westin

Metal

Glass
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Skin rendering:  
subsurface scattering hacks

• We cheat to get real-time 
performance 
–Though, more sophisticated real-

time algorithms exist 
• Ideally: subsurface scattering 

–Photons enter material, bounces 
around inside material, and then 
exits at another point 

• Hacks: 
–Wrapping + color shifting 
–Depth maps 
–Texture space diffusion

Rendered using NVIDIA’s Gelato
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Approximating Skin

• Wrap lighting

• Lighting wraps around 
the object beyond where 
it would normally go dark

”Real-time Approximations To Subsurface Scattering”, 
Simon Green, GPU Gems, 2004
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Approximating Skin

• Wrap lighting

• Blend in red as the lighting approaches zero

”Real-time Approximations To Subsurface Scattering”, 
Simon Green, GPU Gems, 2004
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Subsurface scattering using 
depth maps (cont’d)
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Subsurface scattering using 
Depth Maps

• Compute object thickness from camera’s POV 

• Use thickness to look up a color for the skin

30
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• Render back faces into FP16 buffer 

• Render front face, fetch back face depths from buffer 

• Compute distance, scale to [0,1] 

• Look up color

31
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Ambient Occlusion

36

• How much ambient light hits 
a point? 

• Calculate the local occlusion 
around a point in the scene

2D cross section of 3D hemisphere
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Screen Space Ambient 
Occlusion (SSAO)

37

• Compute points on a sphere 
• Compare z and count passing points 
• Divide by number of points in hemisphere

Mittring07, “Finding Next Gen-CryEngine2”, ARTRi3DGG, SIGGRAPH course

Yellow - Surface point 
Red - Failing point 
Green - Passing point

From RTR3 p. 383
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Screen Space Ambient 
Occlusion (SSAO)

38

From RTR p. 384

AO albedo

Left +
specular +
shadows

AO +
albedo
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Overview of Screen-
Space AO Methods

McGuire et al., “Scalable Ambient Obscurance”, High Performance Graphics 2012
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Scalable Ambient 
Obscurance

McGuire et al., “Scalable Ambient Obscurance”, High Performance Graphics 2012
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Adding surface details
• Normal/Bump mapping 
• Displacement mapping  
• Parallax mapping 
•

41
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Parallax Occlusion Mapping

42
courtesy http://ati.amd.com/developer/gdc/2006/GDC06-Tatarchuk-Parallax_Occlusion_Mapping.pdf

http://ati.amd.com/developer/gdc/2006/GDC06-Tatarchuk-Parallax_Occlusion_Mapping.pdf
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Per-Pixel Displacement 
Mapping

• Extrude triangles up from the surface 
• Ray trace through the displacement map

43

“Hardware Accelerated Per-Pixel Displacement Mapping”, Hirche et. al., Graphics Interface 2004

http://fileadmin.cs.lth.se/graphics/research/papers/mike/Hirche-2004-Hardware.pdf
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Toon Shading

• Characteristics?

Dark outlines of 
important 
silhouettes

Few shades in 
shading

• Why not do it using shaders?
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Some Cartoon renderings

© 2009 Tomas Akenine-Möller 

Flock

Cocoon

Townscaper
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Few shades...
• Simple  

–Two slightly different ways of doing it

cos(α)=dot(n,l)

• Let different intervals on 
cos(α) correspond to 
different colors 
– Do it using computations or 

a 1D texture

light
normal

α
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Few shades (cont’d)
• A bit more complex example 

–Uses entire Phong shading equation, with step 
functions to do thresholding

• Filtering:  
– if you use 1D textures, you can just 

turn on mipmapping 
–If you compute: use smoothstep()

smoothstep(min,max,x)
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Silhouette rendering
• In screen space: 

– Use edge detection 
– On both depth buffer and normal buffer 
– Finds both silhouettes and important ”internal silhouettes” (creases)

Depth buffer Edges derived 
from depth buffer

Normal buffer Edges derived 
from normal 
buffer

Combination: 
normal + depth

Images courtesy of Aaron Hertzmann
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Silhouette rendering (cont’d)
• Procedural geometry silhouetting 
• Basic idea: 

–Render frontfaces as usual, and then 
–Render backfaces so the silhouettes become visible 

eye

Front 
facing

Back 
facing translate

Backface visible

Problem: thickness 
depends on orientation 
of backfacing triangle
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Silhouettes
• Using enlarged objects technique 

• First pass render front faces

eye

Second pass:

Extruded 
backfaces  
are rendered 
in silhouette 
color

eye

Frontfaces are rendered



© 2009 Tomas Akenine-Möller 51

Non-photorealistic rendering
• Cartoon rendering is one example of this

Technical 
illustration

“Real-Time Hatching”, E. Praun et. al., SIGGRAPH 2001
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Glow
• Render object in ”glow color” to separate 

texture 
• Apply low-pass blur filter 
• Blend with rendering of object

“Real-Time Glow”, Greg James, John O’Rorke, 
Chapter 21, GPU Gems

http://http.developer.nvidia.com/GPUGems/gpugems_ch21.html
http://http.developer.nvidia.com/GPUGems/gpugems_ch21.html
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”Fur” Closeup

Images courtesy of Pixar Inc.
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Real-time fur rendering

• Render ”inner surface” 
• Render ”fins”, around silhouttes 
• Render many concentric shells, 

semi-transaprent

“Real-Time Fur over Arbitrary Surfaces”, Jerome Lengyel, et. al. I3D 2001

http://jedwork.com/jed/papers/LPFH-fur-2001.pdf


MD22
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Next ...
• Work on assignment 1 - Ray Tracing 

–Read the assignment 
–Get the code running 
–Post questions on Discord 

• Next week 
– Monday - Seminar 

• Shadows and Deferred shading - Lab 2 
– Tuesday/Wednesday Lab  

• Assignment 1 - Ray Tracing 
– Thursday - Lecture 

• Performance


