
Fixed point math, 
texturing and texture 

caching
Michael Doggett

Department of Computer Science
Lund university



Pixel shader

Vertex shader

Last week’s stage of the 
Graphics Pipeline

Rasterization

FrameBuffer

Z & Alpha



Edge 
functions

Vertex positioning

Traversal

Interpolation

Last week
Rasterization



© 2009 Tomas Akenine-Möller 4

But first, Assignment 1!
• C++ programming, but very localized in 

functions where you should add code
–C++ should be no problem (if it is, then ask on the 

forum)
• Only uses simple OpenGL

–should work on any GPU
•But requires Windows



© 2009 Tomas Akenine-Möller 5

Assignment 1
• Two small parts in this assignment:

–Find three bad things in small scenes
• Fix the code so that correct behaviour is obtained

–Use a texture cache
• Should be able to reduce texture bandwidth to 
10-15%



© 2009 Tomas Akenine-Möller 6

Overview
• Theory:

–Fixed-point math (Appendix A – online)
–Texturing (Chapter 5 – online)
–Texture caching (see assigned papers)

• Caches (Section 5.5 in notes)
–For assignment 1, it will help to read chapters 2 and 3 

as well (online)

• Practice:
–More about the rasterizer framework for assignment 1
–More about the actual assignment



© 2009 Tomas Akenine-Möller 7

Fixed-point math
• Not floating point... 
• Good to know!
• Essential for hardware design
• Can be used for performance optimizations



© 2009 Tomas Akenine-Möller 8

Integer vs fixed-point
• An 8-bit integer: b7 b6 b5 b4 b3 b2 b1 b0

• bi is ”worth” 2i as usual
–But where is the decimal point?

b7 b6 b5 b4 b3 b2 b1 b0 00000...

• What if we move it to the left?

• bi is still ”worth” 2i : b-1=0.5, b-2=0.25, ... 

b5 b4 b3 b2 b1 b0 b-1 b-2 00000...



© 2009 Tomas Akenine-Möller 9

What is fixed?
• The decimal point...
• A fixed-point number has a representation of [i.f] bits

– i bits for the integer part (with sign, or without)
• We assume that two’s-complement is used, i.e., integer math can be 

used
– f bits for the fractional part

• Look at the fractional bits...

f1 f2 f3 f4

Decimal point

Worth 1/21=0.5
Worth 1/22=0.25

1/23=0.125

1/24=0.0625



© 2009 Tomas Akenine-Möller 10

Resolution
• f  fractional bits ! resolution is 2-f

• Examples:



© 2009 Tomas Akenine-Möller 11

How to maintain the best 
accuracy?

• The number of bits needed for exact 
accuracy is increased after each 
mathematical operation (e.g., addition)
–Overflow

• We focus on
–Addition/subtraction
–Multiplication

• Reason: needed for part of assignment 1



© 2009 Tomas Akenine-Möller 12

Conversion: 
to fixed and back again

• We have floating point number, a, and want fixed-
point, [i.f]

• To fixed:
• Nice thing: we now have an integer, and so can use 

integer addition, mult etc  (but see next slides on that)

• Rounding is implemented:

• If we have fixed-point number, b, we get a float as:

• x 2f  and x 2-f   are implemented as left and right shifts 
(fast!) 



© 2009 Tomas Akenine-Möller 13

Very simple example:
• We have float b=0.25
• And want to represent it in fixed-point with 3 

fractional bits, i.e., f=3
•  round(0.25*23)=2
• Thus 2 is the fixed-point representation of 

0.25 with three fractional bits
• Can look at the 8 bits of the integer:

–0000.010  (= 2 if you disregard the decimal point)



© 2009 Tomas Akenine-Möller 14

Addition precision

• Why? Imagine the worse case:
–Both numbers hold their maximum number:

• Eg 111.11b +111.11b = 1111.10b

• Result grows by one bit in integer part!

• Number of bits becomes:

=?

Note ”+1”



© 2009 Tomas Akenine-Möller 15

Multiplication precision
• More complex. Can be seen as many adds!

–So intuitively, should need more bits to store

• Note, that if you want to maintain exact 
accuracy, we need to move the ”fixed-point”
–Need twice as many fractional bits!

• In general:

• See appendix A for an explanation
– Basically, a mult is a series of additions of shifted numbers



© 2009 Tomas Akenine-Möller 16

Fixed-point in practice
• In C++ code, you deal with these as int’s

–32 bit signed numbers (but you need not use all of the bits)

• However, you need to prepare the calculations so that 
bits are not lost

• For edge functions it is of utmost importance to maintain 
exact values
–(after you have rounded off floating-point screen space 

coordinates to sub-pixel fixed-point coords)
• Example: a and b are [8.2]. If you write:
–c=a*b;  // then c is [16.4] 
–d=c>>2;  // d is now 16.2 format 
–          // (but we’ve lost 2 LSB 
–     // fractional bits)



© 2009 Tomas Akenine-Möller 17

Fixed-point example
•float a=2.75f; 
•int ai=int(a*(1<<2)+0.5); // [2.2] 
•// should use floatToFixed() 

•float b=2.5f; 
•int bi=int(b*(1<<1)+0.5); //[2.1] 
•// how to compute ai+bi? 
•int ci=ai+(bi<<1);  // [3.2] bits



© 2009 Tomas Akenine-Möller 18

End of fixed-point...
• In software frame work, a function                         
int floatToFixed(fracBits, float_number)  is 
used.

• When you do a matrix/vector multiply
–You often do [16.16]*[16.16] ~=[32.16], or worse

• Remember
–Full accuracy needed for edge-functions

• Read appendix A and chapter on Edge Funcs again
–Available on course website



Pixel shader

Vertex shader

Last week’s stage of the 
Graphics Pipeline

Rasterization

FrameBuffer

Z & Alpha



Pixel shader

Vertex shader

Today’s stage of the 
Graphics Pipeline

Rasterization

FrameBuffer

Z & Alpha

Texture



© 2009 Tomas Akenine-Möller 21

Texturing – the tiny details

• Surprisingly simple technique
–Extremely powerful, especially with programmable 

shaders
–Simplest form: ”glue” images onto surfaces (or 

lines, or points)

Image from ”lpics”-paper by Pellacini et al. SIGGRAPH 2005
PIXAR Animation Studios



© 2009 Tomas Akenine-Möller 22

Texture space, (s,t)

• Texture resolution, often 2a x 2b texels
• The ck are texture coordinates, and belong to a 

triangle’s vertices
• When rasterizing a triangle, we get (u,v) 

interpolation parameters for each pixel (x,y):
–Thus the texture coords at (x,y) are: 

(u,v)

(s,t)



© 2009 Tomas Akenine-Möller 23

A texture image + coord systems

• An wxh=8x4 texture. 
–(s,t) are independent of texture resolution
–(sw,th) depend on the resolution, and are used to 

access texels…
• Each pixel in a Texture is called a “Texel”



© 2009 Tomas Akenine-Möller

Texture filtering

MINIFICATION MAGNIFICATION

What do we
get here?

© 2008 Tomas Akenine-Möller 

• We basically want the sum of the texels in 
the footprint (dark gray) to the right



© 2009 Tomas Akenine-Möller 25

Texture magnification (1)

• Middle: nearest neighbor – just pick nearest 
texel

• Right: bilinear filtering: use the four closest 
texels, and weight them according to actual 
sampling point



© 2009 Tomas Akenine-Möller 26

• Bilinear filtering is simply, linear filtering in x:

Texture magnification (2)

t00 t10

t11t01

• Followed by linear filtering in y:



© 2009 Tomas Akenine-Möller 27

Texture minification
• If nearest neighbor or bilinear filtering is used, 

then serious flickering will result
–Extremely annoying

Nearest
neighbor

Trilinear
mipmapping

For a pixel here, there is a 50%
chance of getting a black texel



© 2009 Tomas Akenine-Möller 28

Texture minification: mipmapping

An image pyramid
of low-pass
filtered images

© 2009 Tomas Akenine-Möller



© 2009 Tomas Akenine-Möller 29

Trilinear Mipmapping (1)

• Basic idea:
–Approximate (dark gray footprint) with square
–Then we can use texels in mipmap pyramid



© 2009 Tomas Akenine-Möller 30

Trilinear mipmapping (2)

• Compute d (LOD) (see Chapter 5), and then use two 
closest mipmap levels
– In example above, level 1 & 2

• Bilinear filtering in each level, and then linear blend 
between these colors ! trilinear interpolation

• Nice bonus: makes for much better texture cache 
usage

demo1.exe

Text



© mmxiii mcd

Texture
Caching



© 2009 Tomas Akenine-Möller 32

Texture caching
• Without a cache, we can get ridiculously expensive 

texturing... 
• Basic idea is: just use a cache for recently accessed 

texels
–Since we access coherently, hit rate should be quite 

high!
– In hardware, a cache can be:

• A small SRAM memory, or
• A set of flipflops
• We assume that an access in the cache is for ”free”

• In the assignment, texture filtering (eg mipmapping) 
is done for you.
–You should experiment with caching parameters!



© 2009 Tomas Akenine-Möller 33

Assumptions: memory architecture
• Accesses to external memory are expensive

–Both in time and from energy perspective
–Bursting (i.e., send a sequence of continuous 

words) is often (much) cheaper
• E.g., fetching 8x 32-bit words (32 bytes) in a 
sequence is much faster than fetching 8x 32-bit words 
that are in random places...

External
memory

Fragment
Generation

Triangles

Textured fragments

PI
PE

LI
N

E

Texture cache



© 2009 Tomas Akenine-Möller 34

Texture cache readings
• A nice introduction :

– My “Texture Caches” paper from IEEE Micro 2012
• Also :

– ”The Design and Analysis of a Cache Architecture for Texture Mapping”, by 
Hakura and Gupta, in ISCA 97.

– ”Prefetching in a Texture Cache Architecture”, by Igehy et al, in Graphics 
Hardware 1998.

• Note that these are old papers, and cache sizes etc don’t apply to modern systems...
• The general results still apply though

• GPU Example: NEON architecture (1998)
– Built by Digital Equipment Corporation (bought by Compaq (bought by HP))
– Has 256 bytes of cache, fully associative
– Split into 8 different small caches

• So 8 texels can be fetched every clock cycle
– Cache line size is 32 bits

• This is very small. The optimal size depends on what type of external memory you 
have

• More about GPU memory architecture in a later lecture 



© 2009 Tomas Akenine-Möller 35

How to get good efficiency
• Three important things [Hakura & Gupta]:

–How texels in texture are ordered in memory
–Rasterization algorithm
–Cache parameters

• Associativity
–Number of cache lines = sets X ways
–n - way associate cache :  means n blocks(lines) in each set

• Cache line size
• Cache size



© 2009 Tomas Akenine-Möller 36

Representation of textures in mem
• Normally, a 4x4 texture is stored as:

–RGBA0, RGBA1, RGBA2, ... RGBA15 
• What if, we traverse in the vertical 

direction?
–E.g., accessing 1,5,9,13
–Quite bad if we read, say, 4 texels into 

the cache at a time
• Are better texel orderings possible?
• With representation to the right, only 

two blocks are read into the cache

15141312
111098
7654
3210

15141110
131298
7632
5410

• This representation will (on average) get the same 
performance regardless of traversal direction!!!



© 2009 Tomas Akenine-Möller 37

• This is called a ”blocked” or ”tiled” 
representation - “z-order”

• It is a 4D structure: first find 2x2 
block, then texel in block

Representation of textures...

15141110
131298
7632
5410

• In general, we have an nxn block... 
–n is power of 2

• Mipmap levels can thrash at exactly the same location 
in a direct mapped cache

• Solution:
–Use a fully associative cache
–Hakura & Gupta shows that a 2-way associative cache 

gives similar results
–Or simpler, ”bake” the mipmap level into the computation of 

the ”cache key” (tag)



© 2009 Tomas Akenine-Möller 38

Texture cache recommendations

• Tile (block) size in texture should be equal to cache 
line size

• Can even extend to 6D addressing
–Another level, where each block is the size of the entire 

cache... 
• Further minimizes conflict misses

–Also, Igehy et al use two separate direct-mapped 
caches:
• One for odd mipmap levels, and one for even
• Is enough to get good results
• Again, one direct-mapped cache would work if the cache key 

(tag) take mipmap level into account (but having two caches 
gives more bandwith from the caches)



© 2009 Tomas Akenine-Möller 39

Traversal algorithm
• Traversal algorithm affects the order in which 

texels are accessed !
–Also influences texture caching...

• With scanline-based traversal, we do not get 
any positive effects for pixels below current 
scanline
–This is assuming a small cache
–Positive effects should be possible, due to bilinear 

filtering (used in mipmapping and magnification)

• Tiled traversal performs better!
–Especially for large triangles



© 2009 Tomas Akenine-Möller 40

Why is mipmapping good for 
texture caching?
• We choose mipmap levels to 

access where footprint 
becomes ~1 texel

• Therefore, traversal moves slowly in texture 
space ! many cache hits!

• Better than nearest neighbor (minification)



© 2009 Tomas Akenine-Möller 41

Back to the assignment... 
The coding framework (1)

• Implements a subset of OpenGL
–(mostly focused on the rasterizer)

• Designed so 
–that is, it is built around units that exist in real 

hardware
• Programmability

–We have fragment shaders as well
–Though, focus is not on using them right now...



© 2009 Tomas Akenine-Möller 42

The coding framework (2)
• Uses Microsoft Visual Studio 2008

–But upgrades to work with 2010/12/13/15
• Nice feature for this assignment:

–Press the R key, and you can toggle rasterizer
–You can switch from 

• our software rasterizer
• to the OpenGL hardware rasterizer



© 2009 Tomas Akenine-Möller 43

Actual assignment (1)
• Two tasks..
• Task 1:

–Switch between the software rasterizer and hardware 
OpenGL rasterizer (press ’R’)

–Use this to detect the ”artifacts”
• Three artifacts: need to be corrected so that results are 
”very near” identical to hardware OpenGL

• How could I know how to correct the artifacts?
• Read the literature that we recommend!

–Everything is very localized in the source:
• Change in cRasterizer.* + cEdgeFunc.* 



© 2009 Tomas Akenine-Möller 44

Actual assignment (2)
• Task 1: Fix pixel errors.

• Task 2:
–Time to reduce texture bandwidth
–In glstate.cpp, add a texture cache...
–Should be able to reduce texture bandwidth to at 

most 10-15%...
–You need to experiment quite a bit to get this kind 

of performance...



© 2009 Tomas Akenine-Möller 45

cRasterizer
or

cTileRasterizer

More about the  
software framework

setup()

rasterizeTriangle()
[i.e., triangle traversal]

For each pixel
inside triangle

perFragment() Compute depth cDepthUnit – depth test
Perspective
interpolation

Fragment 
shader

cTextureUnit – 
texel fetch & filtering

Write color cColorUnit



© mmxvi mcd

Next
• Don’t forget to read the literature!

• Text has full background to the slides

• Very valuable for assignments too

• Labs

• Find a partner (ask on the forum)

• Sign up

• Check the web page for info http://cs.lth.se/edan35

• Ask questions on the forum

• Next Lecture :

• Shader programming

http://cs.lth.se/edan35

