Rasterization

Michael Doggett
Department of Computer Science
Lund university
Today’s stage of the Graphics Pipeline

- Vertex shader
- Rasterization
- Pixel shader
- Z & Alpha
- FrameBuffer

© 2011 Michael Doggett
How to rasterize a triangle?

Edge functions

Vertex positioning

Traversal

Interpolation

© 2011 Michael Doggett
Edge functions

Vertex positioning

Traversal

Interpolation
Which pixel is inside a triangle?

- Triangle traversal

Clearly, this pixel belongs to the triangle

Clearly, this pixel does NOT belong to the triangle
Which pixel is inside a triangle?

- How about this case?
- And this?
- And this?
- And this?

• Sample at the center
How are we computing pixel center?

Screen space coordinates

\((p_x, p_y)\) are in \([0, w] \times [0, h]\)
What happens if you round off floating point vertices to nearest pixel center?

Triangle edge using floating point coords

Edge with ”snapped” vertex coordinates

Frame 1

Frame 2

Frame 3

Big jump here... looks really bad.

With sub-pixel coordinates this will get solved
We need sub-pixel coordinates!

- We can use **fixed point** math (integer)
- Use 2 sub-pixel fractional bits per x, and y

Remember: integer coords at pixel corners!
Edge functions

Vertex positioning

Traversal

Interpolation
How do we determine if a sample is inside a triangle?

• Convert edges into functions
 • line equation \(ax + by + c = 0 \)
 • Edge function for 2 points \(\mathbf{p}^0 \) and \(\mathbf{p}^1 \) is:

\[
e(x, y) = -(p^1_y - p^0_y)(x - p^0_x) + (p^1_x - p^0_x)(y - p^0_y)
\]

\[
e(x, y) = ax + by + c = \mathbf{n} \cdot (x, y) + c.
\]

Can be thought of as the ‘normal’ of the line
How do points relate to the edge function?
Points are inside if all edge functions are positive!
What happens to pixels exactly on an edge?

Does the pixel belong to A or B, or both? or neither?

- One and only one of A or B
- Because:
 - No cracks between triangles
 - No overlapping triangles
How to decide which triangle an edge sample is in?

One solution (by McCool et al.)

bool INSIDE(e, x, y)

1 if e(x, y) > 0 return true;
2 if e(x, y) < 0 return false;
3 if a > 0 return true;
4 if a < 0 return false;
5 if b > 0 return true;
6 return false;

• Another way to think about it:

• We exclude shadowed edges
Edge functions

Vertex positioning

Traversal

Interpolation
Triangle traversal strategies

• Simple (and naive):
 • execute `Inside()` for every pixel on screen, and for every edge

• Little better: compute bounding box first

• Called ”bounding box traversal”

Visits all gray pixels

Only dark gray pixels are inside
So only keep those

© 2008 Tomas Akenine-Möller
Backtrack traversal

- Was used for mobile graphics chip
 - by Korean research group (KAIST)
- Advantage: only traverse from left to right
 - Could make for more efficient memory accesses
 - Could backtrack at a faster pace (because no mem acc)
Zigzag traversal

- Simple technique that avoids backtracking
- Still visits outside pixels
- see the last scanline
Side by side comparison

Backtrack vs zigzag

Backtrack never visits unnecessary pixels to the left

Zigzag never visits unnecessary pixels to the left on even scanlines and to the right on odd scanlines (and avoids backtracking)
Tiled traversal

- Divide screen into tiles
- each tile is $w \times h$ pixels
- 8x8 tile size is common in desktop GPUs
Tiled traversal

• Gives better texture cache performance
• Enables simple culling (Zmin & Zmax)
• Real-time buffer compression (color and depth)
Is tiled traversal that different?

- We need:
 1: Traverse to tiles overlapping triangle
 2: Test if tile overlaps with triangle
 3: Traverse pixels inside tile

- We only need new algorithm for part 2
- Can use Haines and Wallace’s box line intersection test (EGSR94)
Edge functions

Vertex positioning

Interpolation

Traversal
How can we interpolate parameters across triangles?
How can we interpolate parameters across triangles?

- What is s at p?
- S should vary smoothly across triangle
- Use barycentric coordinates, (u,v,w)
Barycentric Coordinates

Proportional to the signed areas of the subtriangles formed by p and the vertices

Area computed using cross product, e.g.:

\[A_1 = \frac{1}{2} \left((p_x - p^0_x)(p^2_y - p^0_y) - (p_y - p^0_y)(p^2_x - p^0_x) \right) \]

In graphics, we use barycentric coordinates normalized with respect to triangle area:

\[(\bar{u}, \bar{v}, \bar{w}) = \frac{(A_1, A_2, A_0)}{A_\Delta} \]

\[A_\Delta = A_0 + A_1 + A_2 \]

Not perspective correct

\[\bar{u} + \bar{v} + \bar{w} = 1 \quad \bar{w} = 1 - \bar{u} - \bar{v} \]

© 2008 Tomas Akenine-Möller
What do barycentric coordinates look like?

- Constant on lines parallel to an edge
- because the height of the subtriangle is constant
How to use them?

Interpolate vertex parameters s_0, s_1, s_2

\[s = \bar{w}s_0 + \bar{u}s_1 + \bar{v}s_2 = (1 - \bar{u} - \bar{v})s_0 + \bar{u}s_1 + \bar{v}s_2 \]
\[= s_0 + \bar{u}(s_1 - s_0) + \bar{v}(s_2 - s_0). \]
Barycentric coordinates from edge functions (1)

• The a and b parameters of an edge function must be proportional to the normal.

• We can use the edge functions directly to compute barycentric coordinates as well!

• Focus on edge, e_2:

$$e_2(x, y) = e_2(p) = n_2 \cdot (p - p^0)$$
Barycentric coordinates from edge functions (2)

- From definition of dot product:

\[e_2(x, y) = e_2(p) = n_2 \cdot (p - p^0) \quad \iff \quad e_2(p) = ||n_2|| \cdot ||p - p^0|| \cdot \cos \alpha \]

- We can show that \(||n_2|| = b \) (base of triangle)
- \(||p - p^0|| \cdot \cos \alpha \) is the length of projection of \(p - p^0 \) onto \(n_2 \) i.e., \(h \) (height of triangle)
Barycentric coordinates from edge functions (3)

- This means:

\[
\begin{align*}
\bar{u} &= \frac{e_1(x, y)}{2A_\Delta} \\
\bar{v} &= \frac{e_2(x, y)}{2A_\Delta}
\end{align*}
\]

- And $1/(2A_\Delta)$ can be computed in the triangle setup (once per triangle)
Resulting interpolation

With barycentric coordinates, i.e., without perspective correction

With perspective correction

• Looks even worse when animated...

• Clearly, perspective correction is needed!

Which is which?
Perspective-correct interpolation

• Why?
 – Things farther away appear smaller!

• And even inside objects, of course:
Remember homogeneous coordinates

\[Mv = h = \begin{pmatrix} h_x \\ h_y \\ h_z \\ h_w \end{pmatrix} \rightarrow \begin{pmatrix} h_x/h_w \\ h_y/h_w \\ h_z/h_w \\ h_w/h_w \end{pmatrix} = \begin{pmatrix} h_x/h_w \\ h_y/h_w \\ h_z/h_w \\ 1 \end{pmatrix} = p \]

M is a projection matrix

\[p = (p_x, p_y, p_z, 1) \] in screen space
Perspective correct interpolation

\[
\frac{s}{w} \frac{1}{w} = \frac{sw}{w} = s
\]

- An overly simplified way to think of it
- Linearly interpolate
 - \(s/w\) in screen space
 - \(1/w\) in screen space
- Then divide

© 2008 Tomas Akenine-Möller
Perspective correct interpolation coordinates

- Compute perspective correct barycentric coordinates \((u, v, w)\) first
- Then interpolate vertex parameters

\[
s(p_x, p_y) = (1 - u - v)s^0 + us^1 + vs^2 = s^0 + u(s^1 - s^0) + v(s^2 - s^0)
\]
Perspectively correct barycentric coordinates

Recall perspective correction

\[u(p_x, p_y) = \frac{\hat{s}(p_x, p_y)}{\hat{o}(p_x, p_y)} \]

\[\hat{s}(p_x, p_y) = (1 - \bar{u} - \bar{v}) \frac{0}{h_w^0} + \bar{u} \frac{1}{h_w^1} + \bar{v} \frac{0}{h_w^2} \]

\[\hat{o}(p_x, p_y) = (1 - \bar{u} - \bar{v}) \frac{1}{h_w^0} + \bar{u} \frac{1}{h_w^1} + \bar{v} \frac{1}{h_w^2} \]

Simplify:

\[u(p_x, p_y) = \frac{e_1}{h_w^1} + \frac{e_0}{h_w^0} + \frac{e_2}{h_w^2} \]

\[
\begin{align*}
 u &= \frac{f_1}{f_0 + f_1 + f_2} \\
 v &= \frac{f_2}{f_0 + f_1 + f_2}
\end{align*}
\]

\[
\begin{align*}
 f_0 &= \frac{e_0(x, y)}{h_w^0} \\
 f_1 &= \frac{e_1(x, y)}{h_w^1} \\
 f_2 &= \frac{e_2(x, y)}{h_w^2}
\end{align*}
\]
Once per triangle vs Once per pixel

Triangle setup

<table>
<thead>
<tr>
<th>Notation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>a_i, b_i, c_i, $i \in [0, 1, 2]$</td>
<td>Edge functions</td>
</tr>
<tr>
<td>$\frac{1}{2A_{\Delta}}$</td>
<td>Half reciprocal of triangle area</td>
</tr>
<tr>
<td>$\frac{1}{h_w^i}$</td>
<td>Reciprocal of w-coordinates</td>
</tr>
</tbody>
</table>

Per pixel (simple)

<table>
<thead>
<tr>
<th>Notation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>$e_i(x, y)$</td>
<td>Evaluate edge functions at (x, y)</td>
</tr>
<tr>
<td>(\bar{u}, \bar{v})</td>
<td>Barycentric coordinates (Equation 3.13)</td>
</tr>
<tr>
<td>$d(x, y)$</td>
<td>Per-pixel depth (Equation 3.14)</td>
</tr>
<tr>
<td>$f_i(x, y)$</td>
<td>Evaluation of per-pixel f-values (Equation 3.21)</td>
</tr>
<tr>
<td>(u, v)</td>
<td>Perspectively-correct interpolation coordinates (Equation 3.22)</td>
</tr>
<tr>
<td>$s(x, y)$</td>
<td>Interpolation of all desired parameters, s' (Equation 3.15)</td>
</tr>
</tbody>
</table>
What’s next

• Read chapter 2 & 3 in Graphics Hardware notes
 • Rasterization and interpolation
• Next Week
 • Fixed point math (for the sub-pixel sampling)
 • Texturing
 • Caching
 • Read chapter 5.5 General Caching
• Assignment 1 available on the web page
The End!