
Graphics Architectures
and OpenCL

Michael Doggett
Department of Computer Science

Lund university

2024

MD24

• Next Monday

• 1st - Advanced Graphics Summit: Raytracing in Snowdrop: An
Optimized Lighting Pipeline for Consoles

• Quentin Kuenlin, Massive Entertainment

• For the game, Avatar: Frontiers of Pandora

• 2nd - Vulkan, Animations and the Ray-Tracing pipeline

• Gustaf Waldemarson, ARM

Lectures

© mmxii mcd

Overview
• Parallelism

• GPU Architecture - Radeon 5870

• Tiled Graphics Architectures

• Important when Memory and Bandwidth limited

• Different to Tiled Rasterization!

• Tessellation

• OpenCL

• Programming the GPU without Graphics

3

“Only 10% of our pixels require lots of
samples for soft shadows, but

determining which 10% is slower than
always doing the samples. ” by

ID_AA_Carmack, Twitter, 2011-10-17

https://twitter.com/#!/ID_AA_Carmack

© mmxii mcd

Parallelism

• GPUs do a lot of work in parallel

• Pipelining, SIMD and MIMD

• What work are they doing?

5

What’s running on 16 unified shaders?
128 fragments in parallel

6

16 cores = 128 ALUs MIMD
16 simultaneous instruction streams

Slide courtesy Kayvon Fatahalian

128 [] in parallel

7

vertices/fragments
primitives

OpenCL work items
CUDA threads

fragments

vertices

primitives

Slide courtesy Kayvon Fatahalian

© mmxii mcd
8

• Let’s take the ATI Radeon 5870

• From 2009

• What are the components of the
programmable graphics hardware pipeline?

Unified Shader Architecture

© mmxii mcd

Unified shader

Rasterizer

FrameBuffer

Z & Alpha

Grouper

Texture

Unified Shader Architecture

9

MD21

Shader Inputs

Unified Shader

Memory, Z & Alpha

FrameBuffer

GPU Architecture
ATI Radeon 5870

MD21 ATI Radeon 5870

Shader Inputs

RasterizerVertex Grouper Geometry GrouperTessellator

Projection and viewport transform

Viewport culling and clipping

Primitive Assembly
Compute

Shader Inputs

Unified Shader

Memory, Z & Alpha

MD21

Unified Shader

ATI Radeon 5870

ee

Thread Scheduler

20 SIMD Engines

64 KB GDS Shader Export

Shader Processor
5 32bit FP MulAdd

16 Shader Processors

32 KB LDS

Texture Sampler

8 KB L1 Tex Cache

256 KB GPRs

Shader Inputs

Unified Shader

Memory, Z & Alpha

MD21 ATI Radeon 5870

Memory, Z & Alpha

4 Memory Controllers
128 KB L2 Tex Cache

4 Memory Controllers
128 KB L2 Tex Cache

4 Memory Controllers
128 KB L2 Tex Cache

4 Memory Controllers
128 KB L2 Tex Cache

Z & Alpha Unit

Z test

Z & Color cache

Alpha

32

8

Z & Alpha Unit

Z test

Z & Color cache

Alpha

32

8

Z & Alpha Unit

Z test

Z & Color cache

Alpha

32

8

Z & Alpha Unit

Z test

Z & Color cache

Alpha

32

8

Shader Inputs

Unified Shader

Memory, Z & Alpha

© mmxv mcd

Tiled Based
Architectures

• There are two major styles of GPU
architecture :

• Traditional

• One we work with and discuss

• Dominant in Desktop (Nvidia, AMD, Intel)

• Tiling based

• Dominant in Mobile (ARM Mali, Qualcomm Adreno, Apple Ax)

• Different to tile based rasterisation

14

© mmxv mcd

Examples of Tiled Based
Architectures

• ARM Mali (Mobile)

• Imagination Technologies

• Kyro II (PC graphics)

• Sega Dreamcast (console)

• PowerVR (Mobile)

• Apple GPU

• Other notable ones

• Original Intel Larrabee used a Software Tiled based rasterizer

• (became Xeon Phi)

15

© mmxvii mcd

Tiled Based Rendering
1.

2.

3.

4.

5.

6.

1. 2. 3. 4. 5. 6.

• Screen is divided into Tiles
(e.g. 32x32 pixels)

• Run vertex shader to project
triangles to the screen

• Create Tile Triangle Lists (or
Bins)

• Each list contains pointers to
all triangles in the tile

16

© mmxvii mcd
17

• Take one tile and render all
triangles in that tile list

• Use 1 tile sized on-chip
memory

• After processing all triangles
in the list

• Copy tile memory, with Z
and Color, from on-chip
memory to main memory

Tiled Based Rendering

2.

3.

4.

5.

6.

1.

1. 2. 3. 4. 5. 6.

On-chip
memory

Off-chip
memory

© mmxvii mcd

Tiled Based Rendering

2.

3.

4.

5.

6.

1.

1. 2. 3. 4. 5. 6.

On-chip
memory

Off-chip
memory

• Take one tile and render all
triangles in that tile list

• Use 1 tile sized on-chip
memory

• After processing all triangles
in the list

• Copy tile memory, with Z
and Color, from on-chip
memory to main memory

18

© mmxvii mcd

Tiled Based Rendering

2.

3.

4.

5.

6.

1.

1. 2. 3. 4. 5. 6.

On-chip
memory

Off-chip
memory

• Take one tile and render all
triangles in that tile list

• Use 1 tile sized on-chip
memory

• After processing all triangles
in the list

• Copy tile memory, with Z
and Color, from on-chip
memory to main memory

19

© mmxvii mcd

Tiled Based Rendering

2.

3.

4.

5.

6.

1.

1. 2. 3. 4. 5. 6.

On-chip
memory

Off-chip
memory

• Take one tile and render all
triangles in that tile list

• Use 1 tile sized on-chip
memory

• After processing all triangles
in the list

• Copy tile memory, with Z
and Color, from on-chip
memory to main memory

20

© mmxvii mcd

Tiled Based Rendering

2.

3.

4.

5.

6.

1.

1. 2. 3. 4. 5. 6.

On-chip
memory

Off-chip
memory

• Take one tile and render all
triangles in that tile list

• Use 1 tile sized on-chip
memory

• After processing all triangles
in the list

• Copy tile memory, with Z
and Color, from on-chip
memory to main memory

21

© mmxvii mcd

Tiled Based Rendering

2.

3.

4.

5.

6.

1.

1. 2. 3. 4. 5. 6.

On-chip
memory

Off-chip
memory

• Take one tile and render all
triangles in that tile list

• Use 1 tile sized on-chip
memory

• After processing all triangles
in the list

• Copy tile memory, with Z
and Color, from on-chip
memory to main memory

22

© mmxvii mcd

Mali Bifrost GPU

image courtesy Jem Davies, “Bifrost GPU”, 2016, © ARM

• Hierarchical tiling unit - 16x16, 32x32, 64x64 pixel sized bins

• Switch to Thread Level Parallelism (TLP) quad execution design

• Better for compute

23

http://ieeexplore.ieee.org/document/7936201/

© mmxvii mcd

Mali-G71 Shader Core design

24image courtesy Jem Davies, “Bifrost GPU”, 2016, © ARM

http://ieeexplore.ieee.org/document/7936201/

© mmxvii mcd

Tiling : Advantages

• Easily parallelizable

• Allows access to frame buffer in a small high speed
memory

• Z, Color accesses close to free

• MSAA is almost free (5-10% of rendering time)

• Alpha Blending is significantly cheaper

25

© mmxvii mcd

Tiling : Disadvantages
• More on chip memory for sorting triangles into tiles/bins

• Increased bandwidth for triangle sorting

• State changes now happen for every tile (can take a lot of time)

• Triangles can be processed multiple times (can be solved with Mali
hierarchical tiling)

• On chip memory size places hard limits on number of triangles

• Overflow causes spilling and creates a big hit on performance

• Too much geometry will flush whole pipeline (ParameterBuffer
overflow)

26

© mmxvii mcd

Comparing Tiling to the
Traditional/Straight Pipeline
• Advantages of Straight Pipeline

• Less complex pipeline

• More predictable performance

• Z Framebuffer compression techniques reduce off-chip bandwidth

• State changes once for frame (but too many still a problem)

• Disadvantages

• Impossible to have frame buffer in on chip memory

• Accessing the frame buffer cost power and latency

27

© mmxii mcd

Expanding the graphics
pipeline

• Vertex shaders & Pixel shaders

• But wait there’s more !!!

• Geometry Shaders

• Triangle in, many triangles out

• Like a triangle shader

• Tessellation (in OpenGL terminology)

• Control Shader (DirectX Hull Shader)

• Tessellator

• Evaluation Shader (DirectX Domain Shader)

28

© mmxii mcd

Geometry Shaders

• Input and output can be points, lines, triangles

• But lines and triangles can also have adjacency
information (3 for triangles, 2 for lines)

• Can think of it as the ‘Triangle shader’

• 1:n ratio of input:output

• 1 primitive in, many (or no) primitives out

• Must set a max_vertices for number of outputs

• Number of vertices, number of output components

• Enables storing processed vertices into multiple
buffers (framebuffers)

29

Pixel shader

Rasterization

FrameBuffer

Z & Alpha

Vertex shader

Geometry shader

AV0

AV1

AV2

© mmxii mcd

Geometry Shaders

• Output lines and triangles are strips

• If you want individual, you need
EndPrimitive

• Layered rendering

• Send primitives to specific layers of
framebuffer

• Good for rendering cube-based shadow
mapping and environment maps

• DirectX 10, OpenGL 3.0 feature

30

Pixel shader

Rasterization

FrameBuffer

Z & Alpha

Vertex shader

Geometry shader

AV0

AV1

AV2

© mmxv mcd

Geometry Shader
Applications

• Single pass render to cube map

• Using gl_Layer

• Point sprite expansion/generation

• Fur/Fin generation

• Marching cubes triangle generation

• Shadow volume extrusion

• Tessellation?

31

© mmxii mcd

Tessellation
• Difference between games and film is geometric

detail

• Film uses higher order surfaces (HOS)

• Subdivision Surfaces

• Bezier patches, NURBs

• Tessellation converts HOS into triangles

32
© Disney/Pixar. Image from Nießner, M., et al. “Feature-adaptive GPU rendering of Catmull-Clark subdivision surfaces”, TOG January 2012

© mmxii mcd

Tessellation

• Benefits

• Higher order surfaces such as
subdivision surfaces

• Higher detailed surfaces using displaced
mapping

• View-dependent levels-of-detail

• Input is quad or triangle patches

• DirectX 11 (Hull and Domain
shader), OpenGL 4.0 feature

33

Pixel shader

Rasterization

FrameBuffer

Z & Alpha

Vertex shader

Geometry shader

Control shader

Evaluation shader

Tessellator

© mmxii mcd

Tessellation

• Control shader

• Transforms up to 32 control points of a patch (typically 16)

• Calculates tessellation factor for patch edges in tessellator

• Tessellator

• Outputs UV coordinates

• Evaluation shader

• Calculates the vertex position of the output of tessellator
in the patch

• More info and OpenGL code on LearnOpenGL.com

• https://learnopengl.com/Guest-Articles/2021/Tessellation/
Tessellation

34Images courtesy Charles Loop, “Hardware Subdivision and Tessellation of Catmull-Clark Surfaces”, GTC2010

http://LearnOpenGL.com
https://learnopengl.com/Guest-Articles/2021/Tessellation/Tessellation
https://learnopengl.com/Guest-Articles/2021/Tessellation/Tessellation

© mmxii mcd
35Images courtesy Charles Loop, “Hardware Subdivision and Tessellation of Catmull-Clark Surfaces”, GTC2010

© mmxii mcd
36Images courtesy Charles Loop, “Hardware Subdivision and Tessellation of Catmull-Clark Surfaces”, GTC2010

displacement mapping

© mmxii mcd

OpenCL

• OpenCL - Open Compute Language

• Application Programming Interface (API)

• Runs on GPUs

• Write programs (shaders) for GPU using
OpenCL

• Industry standard between multiple
companies

38

© mmxii mcd

GPU as a parallel
processor

• GPU parallelism has increased significantly
over time

• Roughly 1000x more pixels/sec in 10 years

• People started to use this for more than just
graphics

• How to enable using the GPU as a parallel
processor?

• How could we change OpenGL?

39

© mmxii mcd

Designing OpenCL
• Take out all the graphics

• Triangles, textures, Z testing, alpha blending

• Keep simple small programs (graphics shaders)

• Compute kernels

• Use the C programming model for kernels (ANSI
C99)

• Low-level abstraction

• High-performance, but device independent

• CPUs are also parallel (multicore) so OpenCL
works there too

40

Unified shader

Rasterizer

FrameBuffer

Z & Alpha

Grouper

© mmxii mcd

Designing OpenCL
• Take out all the graphics

• Triangles, textures, Z testing, alpha blending

• Keep simple small programs (graphics shaders)

• Compute kernels

• Use the C programming model for kernels (ANSI
C99)

• Low-level abstraction

• High-performance, but device independent

• CPUs are also parallel (multicore) so OpenCL
works there too

41

Unified shader

FrameBuffer

Scheduler

© mmxii mcd

OpenCL platform
• Compute device may be a CPU, GPU or other processor

• Compute device is made up of Compute Units

• Compute Unit is made up of Processing Elements

• Processing elements execute code as SIMD or SPMD
(Single Program Multiple Data)

• What could be added to GPUs for parallel programming
and not just graphics?

• GPU programs have a lot of dedicated memory(RAM) that only
shaders use

• Shaders cannot communicate with each other while running

42

© mmxii mcd

How can kernels share
data in OpenCL?

• Kernel Local Memory

• Allow kernel programs to share data while running

• Nvidia’s CUDA shared memory

• Graphics groups pixels (shaders) with triangles

• OpenCL groups work-items (kernels/threads) with
work-groups (blocks)

• Local Memory is where work-items in a
work-group can share data

43

© mmxii mcd

OpenCL Memory model
• Private Memory

• Per work-item - registers

• Local Memory

• Shared within a workgroup

• Global/Constant Memory

• Visible to all workgroups

• Read-only data (Constant)

• Off-chip memory for GPU

• GPU memory/framebuffer

• Host Memory

• CPU’s memory

44

Private
Memory

Private
Memory

Work
Item 0

Work
Item M

Compute Unit 0

Private
Memory

Private
Memory

Work
Item 0

Work
Item M

Compute Unit N

Local Memory Local Memory

Global/Constant Memory

Compute Device

Host Memory

Host

© mmxii mcd

How do you run
commands in OpenCL?

• Commands are submitted to a GPU or
CPU queue

• Execution can be in-order or out-of-order

• Events are used for synchronization

45

© mmxii mcd

Execution model

• Kernels are run over an N-Dimensional range
(NDRange)

• Each work-item has a unique identifier (global-id)
46

Work-Item Work-Item

Work-Item Work-Item

NDRange

global size y

global size x

local size y

local size x

Work-Group

equivalent to a thread
(pixel)

© mmxii mcd

OpenCL platform

• Compute device may be a CPU, GPU or other
processor

• Compute device is made up of Compute Units

• Compute Unit is made up of Processing Elements

• Processing elements execute code as SIMD or
SPMD 47

© mmxii mcd

Summary

• OpenCL enables parallel programming

• on both GPUs and CPUs

• from different vendors

• AMD (CPU&GPU), Nvidia (GPU), Intel (CPU&GPU),
ARM(GPU)

• on different operating systems

• windows/linux/mac/android

• At low-level (performance) with well known
programming language

48

© mmxii mcd

Further material on
OpenCL and Compute
• Khronos web page

• http://www.khronos.org/opencl/

• OpenGL 4.3 Compute Shaders

• https://learnopengl.com/Guest-Articles/2022/
Compute-Shaders/Introduction

• Nvidia sample code

• https://developer.nvidia.com/opencl

49

http://www.khronos.org/opencl/
https://learnopengl.com/Guest-Articles/2022/Compute-Shaders/Introduction
https://learnopengl.com/Guest-Articles/2022/Compute-Shaders/Introduction
https://developer.nvidia.com/opencl

MD24

• Next Monday (9th)

• 1st - Advanced Graphics Summit: Raytracing in Snowdrop: An
Optimized Lighting Pipeline for Consoles

• Quentin Kuenlin, Massive Entertainment

• For the game, Avatar: Frontiers of Pandora

• 2nd - Vulkan, Animations and the Ray-Tracing pipeline

• Gustaf Waldemarson, ARM

• No Lecture next Thursday (12th), or following Monday (16th)

• More time for projects!

Next

