
1



Far Cry 3 is coming out this September and is a realistic 
shooter set in a remote island, far off the edge of the 
map. Awesome lighting was a crucial factor to achieving the 
visual fidelity for the game.

2



One of the lighting features that we wanted to have was 
global illumination. 

Far  Cry  3  features  a  large  open  space  world,  so  we  couldn’t  
cover everything in lightmaps – this would be too costly 
memory wise, and a real problem for production.

On the other hand, we thought that fully dynamic solutions 
were not a good trade-off between quality and performance.

3



So, we came up with a technique that we call Deferred 
Radiance Transfer Volumes. 

We use precomputed probes that allow us to relight the scene 
and approximate global illumination in real-time. 

We designed the system to be light both on performance and 
memory. The probe data consumes less than a Mb of system 
memory, and shading on the GPU takes less than half a 
millisecond.

To save additional GPU cycles, we offload much of the work to 
the CPU (SPUs in the case of the PS3). 

This here is the Medusa shipwreck that you might have seen 
in some of the footage that was released a few weeks ago.

The deferred radiance transfer volumes contribute the ambient 
lighting in the image. 

4



There’s  a  couple  of  major  components  to  the  ambient  light  
that we calculate separately.

In the top left corner, we have the bounce lighting of the sun 
and the sky. It illuminates the bottom of the objects, and also 
the parts of the scene which are in shadow from the sun. 

Below is the direct lighting coming from the sky, which adds 
consistency to the whole scene. We model the sky as a large 
hemispherical light source. It adds volume to the objects, by 
illuminating them mainly from the top. 

When we add these two together and throw SSAO in the mix, 
we obtain the final ambient lighting for the scene.

5



A very important feature of our system is that it allow us to 
update the global illumination effects in real-time. 

This is crucial in order to support the dynamic time of day 
cycle that we have in Far Cry 3. Shown here is the same scene 
as before, but during night-time. The bounce from the sun is 
gone,  and  we’re  mostly  left  with  the  direct  lighting  coming  
from the night sky.

These changes are all tracked automatically, and artists get 
immediate feedback when adjusting the lighting settings.

6



We also track the direction of the sun light, and update the 
resulting bounce lighting based on that.

Here is a little test scene to illustrate the effect more clearly. 
The terrain and the two walls on the left and right are static 
objects, so they contribute to the global illumination. The 
spheres are dynamic objects, so they receive global 
illumination but do not contribute to it.

7



Here the light comes from the top left. The spheres in the 
centre get a strong green bounce from the terrain. The 
spheres on the right get a strong red bounce from the red 
wall. Finally, since the wall on the left is in shadow, the 
spheres get no bounce from it.

8



When we rotate the light, the wall on the left is hit by direct 
sunlight and it gives off a strong blue bounce that is picked by 
the sphere. Since the wall on the right is now in shadow, the 
bounce from it is gone.

9



We get the exact same effect using in-game assets. You can 
see how the bounce from the wall on the right becomes much 
more apparent as the sun shines directly onto it.

10



On the PC, as well as distant light sources such as the sun and 
the sky, our system also support global illumination from 
dynamic lights. This is especially useful for night time scenes 
such as this one. When using direct illumination only, the 
lighting can look harsh.

11



The probes make this softer, and you can see how the shack 
and boat pick up a strong secondary bounce from the terrain. 
This makes it easier for artists to illuminate the scene without 
having to use a large number of lights.

12

Michael Doggett




Here’s  an overview of the entire system.

Offline, we place probes in the world and precompute radiance 
transfer for them, a process which is also known as baking. 

In-game, we relight the probes in real-time, whenever the 
lighting environment changes. We generate new irradiance 
values on the fly, which we insert into a number of volume 
textures. The GPU then uses these to shade everything in 
screen-space.

13



This is a screenshot of our custom offline tool for probe 
placement and baking. The tool runs inside the game editor.

The artists can select different parts of the map and generate 
or bake probes only for these regions. They can also manually 
add / remove probes. The tool also allows them to tweak the 
different components of the lighting.

14



Because  FC3  is  a  large  open  world  game,  it’s  inconvenient for 
artists to place all probes manually. Instead, we automatically 
spawn new probes at good locations. 

To do so, we cast vertical rays every 4 meters along the 
ground plane. Every time the ray hits a static object or the 
terrain, we spawn a new probe. We also make sure to keep a 
minimal distance between hits.

15



Since raycasting against the individual tree leaves will give 
very noisy result, we use instead the combined bounding box 
of the vegetation geometry. In order to not going over budget 
by spawning too many probes on top of the vegetation, we 
space the rays every 8 metres instead of 4.

16



Since the probes are quite sparse and can be moved or 
deleted by artists, we need a way of organizing them spatially.

To do that, we create a 3D grid. The  grid’s cells are a single 
byte that represents the index of the nearest probe in that 
section of the map. Here is a screenshot that shows our debug 
rendering, where we display the cells of the grid.

17



Once  we  have  the  probes  in  the  level,  it’s  time  to  bake  the  
data inside them. We use a custom multicore raytracing
solution to do that.

On consoles, the probes store two things - low frequency 
precomputed radiance transfer (PRT for short) and sky 
visibility.

PRT allows us to capture the interaction of the surfaces in the 
scene, without knowing the lighting environment in advance.

If you want more details about PRT, the SIGGRAPH 2002 work 
by  Sloan  et  al.  is  a  good  starting  point.  Microsoft’s  DXSDK  also  
has a PRT implementation and samples.

18



Most of the existing PRT implementations deal with meshes. 
Probes however require more complicated treatment, because 
they  are  really  “empty  space”  – that is, we have no idea of 
what the shading normal is going to be when baking. 

Our solution is to compute PRT for a few directions on the 
sphere.  These  directions  are  called  the  “transfer  basis”.  In  our  
case, we have four of them - the first three point upwards, 
and the last direction points straight down.  

19



We use 2nd order SH, which is 4 floating point coefficients. 
Since we have 4 transfer basis vectors, that gives us a handy 
4x4 matrix. We store three of these – for the R, G and B 
channels.

20



We also store the sky visibility for the probe as a function on 
the sphere. You can think of this as a sort of very low-
frequency sky mask – the function has values of 1 for the 
directions where the sky is visible, and 0 otherwise. We use a 
single scalar for each of the 4 transfer basis directions. This is 
always zero for the last direction that points straight down, 
but we keep it for alignment purposes.

21



For PC, we also bake local radiance transfer. Using that, we 
can approximate global illumination from dynamic light 
sources. You can see the effect in this little test scene, with 
the wall giving off a red secondary bounce on the white 
sphere.

The implementation is based on the SIGGRAPH 2005 paper by 
Kristensen et al. 

22



The key idea is that we assume that at runtime, the dynamic 
lights will be fixed at exactly the same positions as the probes.

At each probe position,  we  place  a  “virtual”  white  point  light.  
We compute the bounce coming from that light source, and 
store it as 2nd order SH coefficients.

We do the same thing for the second probe, and store the 
results in another set of SH coefficients. Same for the third, 
fourth and so on. In total, we store a maximum of 128 LPRT 
coefficients per probe. This gives us a three 128x4 matrices, 
one for each colour channel.

Shortly,  we’ll  see  how  we  can  use  these  to  do  real-time 
relighting from dynamic light sources.

23



We mentioned at the beginning that one of our goals was to keep the 
system memory-friendly. 

We store float4 vectors as 16 bits fixed point, or 8 bytes per vector.  The 
total memory footprint for a probe is quite small, at 152 bytes.

The world in Far Cry 3 is composed of maps, which are divided into
sectors. Each sector is 64 by 64 metres and contains roughly 70 probes. 
Together with the 3D grid that’s  used  for  spatial  indexing,  this  brings  the  
memory consumption per sector to a little bit less than 15KB. 

The dynamic lights add further 210KB to the memory of each sector, which 
is  the  reason  why  we’re  currently  supporting  this  for  PC  only.

In our current configuration we have a maximum of 51 sectors around the 
player loaded in memory at any one time, so the overall footprint in-game 
is around 760KB on consoles, and around 11.5Mb on PC.

24



Let’s  take  a  look  now  at  how  we  do  real-time relighting using 
the data stored in the probes. In FC3, the lighting from the 
sky and the sun is driven by a couple of artist-authored 
gradients.

The first gradient shown here specifies the colour of the sun 
according to the time of day. At runtime, we take the current 
values from the gradient curve and project it into SH 
coefficients. You can see the resulting reconstruction in the 
little image in the top right.

We do the same for the sky gradient.

25



For the dynamic lights, we assumed that they are going to 
coincide with the light probes. So we go through each probe 
and compute how close it is to each dynamic light. Essentially 
we distribute the energy of the dynamic lights across all 
probes. At the end, we end up with an array of colours and 
intensities for each probe. 

26



We do the actual relighting on the CPU (SPU on PS3). The 
operations map quite well to the GPU too, but we choose to 
offload this in order to save some additional cycles. 

27



First, we add the bounce from the sky and sun. We take the 
SH coefficients of the sun and the sky and compute their dot 
product with the PRT coefficients for each basis direction. This 
is equivalent to a SH matrix – vector multiplication.

28



Next, we compute the direct sky lighting. Using the SH 
coefficients for the sky lighting, we evaluate the sky colour for 
each of the transfer basis directions. We then multiply the 
result with the precomputed sky visibility to obtain the final 
result. 

29



On PC, here we also process the dynamic lights. First, we use 
the array of light intensities per probe to scale the radiance 
transfer coefficients. This works since if you remember, we 
used a completely white light source when baking.

30



Then we do a SH dot product to find the bounce illumination 
coming from each basis direction.

31



Each probe now has four colours – one for each basis 
direction. Here is an illustration of the four different colours. 
We’ve  got  a  reasonable  coverage  of  the  sphere,  except  for  
those normals pointing directly up. The choice of transfer basis 
was driven by how much memory we could spare for probe 
storage. If you wish, you can get more accurate results by 
adding more directions. 

32



Once  we’ve  relit  the  probes,  we  insert  the  resulting  irradiance  
values into volume maps which follow the camera. The 
approach was inspired by CryEngine’s light propagation 
volumes.

On GPUs you get fast hardware bilinear filtering with volume 
textures, which  means  we  don’t  have  to  blend  the  probes  
manually. The ambient can also be evaluated per pixel, which 
means we get more interesting lighting for large objects such 
as the ship that you see in this screenshot.

33



We have three volume textures in total, one for each colour 
channel. Each volume texture is RGBA8 and is 96x96x16 in 
size.

Shown here are top down slice (XY) and front (XZ) of the one
of the volume maps. Each texel in the volume texture contains 
the intensities for the four basis directions.

There’s  quite  a  lot  of  texels to update if we were to flush the 
entire volume map – ~147k texels. To update the whole
volume map from scratch takes ~7ms on PS3 on 5 SPUs. 

The reason this is expensive is because for each texel we need 
to find its closest probe by looking up in the 3D grid, fetch its 
basis colours, and finally convert those to their byte 
representation.

Note: si_orx is a pretty handy SPU intrinsics to fetch an index 
into ^2 3D Grid 

34



There’s  two  instances  where  we  need  to  update  the  volume  
textures. First is when the time of day has changed sufficiently 
and  we’ve  relit  the  probes.  The  second  is  much  more  frequent,  
when the camera position has changed, and the volume map 
has moved more than one texel in world space. 

In the second case, rather than flushing the entire volume 
map, our strategy is re-use the data from previous frames.
Only  slices  that  don’t  have  existing  data  are  copied  into  the  
volume textures. In order to avoid shifting the other slices to 
their corresponding location in the volume, instead we use 
wrapping.

This illustration shows how we do that – when the camera 
moves in X, we update the correct Y slice, when it moves in Y 
we update the correct X slice and so on. Here we also keep 
track of the planes that were updated, so we can know at 
what offset the volume textures should wrap around.

35



Here we see two versions of the same slice – on the left is the 
unwrapped one and to the right is the one with wrapping. The 
white lines represent the offsets where the volume wraps 
around.

Since setting the volume texture sampler state to wrap is 
quite costly, we use clamp texture addressing and simulate 
wrapping in the shader using the HLSL frac instruction. This 
gives almost a 5x increase in performance on consoles. To fix 
the filtering between the edges, we duplicate the boundaries 
of the volume.

36



Once we have the volume maps, we use those on the GPU to 
do the actual shading.

In Far Cry 3, we use deferred rendering. We do a single pass 
over the scene and fill a G-buffer. We then do HDR lighting 
and post-processing.

37



Here is what our G-buffer looks like. We store depth, 
worldspace normals, the material albedo, as well as various 
material properties. 

38



Before the lighting pass, we generate a screen-space buffer 
that has the ambient lighting in it. After that we do the sun 
and the rest of the dynamic lights, and finally compose the 
resulting image.

39



Here is a fragment HLSL pseudocode for generating the 
ambient screen space buffer.

40



First, from the world-space position we figure out what the 
volume map coordinates are. Here we use the frac trick to 
simulate wrapping.

41



We then fetch from the volume map and unswizzle the four 
basis colours with are packed in three volume maps.

42



From the world-space normal we determine the four different 
basis weights. We wrap the basis weight for the last direction, 
in order to have a more pronounced bounce from the terrain.

43



We then weigh the basis colours by those and obtain the final 
result for the ambient colour.

44



Let’s  look  at  some  typical  examples  of  our  ambient  shading.  
There’s  a  large  shadowed area in this outdoor scene, which 
makes it easy to see the contribution of probes.

45



Here we’ve  got  the  road  sign  and  the  leaves  receiving  a  
bounce from the terrain. The bounce is still quite strong even 
though at this time of day the area is in shadow. This is 
because we only store low-frequency radiance transfer.

46



Here  we’ve  got  the  rocks  receiving  a  strong bounce from the 
vegetation. The bounce colour is very different from that of 
the terrain and also changes depending on the shading 
normal. This helps a lot to avoid the flat look of the areas that 
are in shadow.

47



Here is another example in a different outdoors scene.

48



Here  we’ve  got  a strong green bounce coming from the 
vegetation, which is picked up by the terrain and the 
underside leaves.

49



And  here  we’ve  got the rock picking up a strong bounce from 
the terrain underneath.

50



At night-time, the bounce from the sun is not as pronounced, 
so most of the ambient shading variation comes from the 
direct sky illumination.

51



Here we see a low-frequency ambient-occlusion like effect that 
comes entirely from the probes.

52



And here we see the colour variation that comes from the sky 
gradient – in  this  case  there’s  a  sunset  offscreen and you can 
see how surfaces oriented that way pick up the orange colour
from it.

53



In our game we have a few materials that are not lit deferred 
– things like transparent objects, particles. In this case, we 
compute the closest probe on the CPU and upload it as pixel 
shader constant, then do the ambient in forward.

54



Far Cry 3 has lots of indoors locations too. The indoors and 
outdoors probe have drastically different intensities, which 
leads to the so-called probe bleeding. In this case we see that 
the interior is incorrectly lit by the outdoors probes, and it 
picks up the colour of the sky which makes it too blue.

55



To prevent this, we have a solution based on closed 3D 
volumes that our artists can place inside the problem
buildings. Each volume have as an associated light probe that
the artists can choose inside the offline tool.

We render the volume in screen-space to a mask buffer. We 
blur the mask buffer to soften the transition between indoor 
and outdoor. We then use it to blend with the main screen-
space ambient buffer. All pixels that are inside the volumes 
are rendered with their specific light probe.

56



Another problem that we had to solve 
has to do with the ambient shading of 
the objects in the distance, and in 
particular the vegetation. If we just 
simply use the sky colour, the resulting 
image has an incorrect blue-ish
ambient colour.

57



To address this, we use a low-resolution, top-down 2D occlusion 
texture. We generate that from the visibility information stored in 
the probes. 

The texture is divided in tiles, each of which represents a sector in 
the world. We regenerate the tiles when the light probes for that 
sector are streamed into memory.

When we do the ambient shading, we use the top down occlusion 
texture to modulate the sky ambient. The texture also stores 
information of the height of the probes, so we can darken less the 
objects that are high above the ground.

We can see how the final image has more contrast, and the jungle 
area  doesn’t  have  the  incorrect  blue  ambient  any  longer.

58



Because we are updating the volume maps on the CPU, 
flickering can occur if the GPU tries to read from the volume 
maps at the same time that the CPU writes to them.

The common approach here is to double-buffer the volume 
maps. We can avoid the extra memory cost by doing custom 
job scheduling. Here is an example of how this works on the 
PS3.

Since the G-buffer pass at the beginning of the frame does not 
require the volume maps, what we do is we use the RSX to 
schedule the relighting and volume texture update jobs, which 
then run in parallel with the G-buffer pass.

We start on the PPU, where we setup the job chain, and kick 
off the RSX command buffer. Here we also insert a Jump To 
Self command which is used for synchronization between the 
RSX and the SPUs.

At the beginning of the frame, the RSX in turn kicks off the 
SPU jobs for relighting and updating the volume map data. It 
then does the G-buffer and SSAO, and eventually it reaches 
the JTS command, where it will wait for the SPUs. 59



On the high level PC configurations, we do an additional step 
where we blur the volume map in order to soften the 
irradiance. This gives us more gradient levels especially with 
the occlusion caused by the vegetation. You can see the 
softening that this extra blurring step produces here.

60



Credits

We’d  also  like  to  thank  the  whole  FC3  3D  Team  for  their  
inspirations, and to Stephen Hill, Benjamin Rouveyrol for 
reviewing  the  slides  and  making  them  more  “human  readable”  


61



Vaas wants you to visit the following websites. Questions?

62



63


