ARM Mali GPU

Midgard Architecture

ARM

Mathias Palmqvist Senior Software Engineer/ARM MPG

Lund University, Faculty of Engineering LTH December 6th 2016

© ARM 2016

Agenda

- Midgard Architecture Overview
- Device Driver Work building
- GPU Software Interface
- GPU Hardware Jobs
- Job Manager
- Unified Shader Core
- Shader Core: Vertex Work
- Tiling Unit
- Shader Core: Fragment Work
- Shader Core: Tripipe

- Power Consumption & Bandwidth Reduction
 - Power Consumption
 - Forward Pixel Kill
 - Transaction Elimination
 - ARM Framebuffer Compression
 - Pixel local storage
- ARM Lund
 - ARM Lund GPU teams
 - GPU HW/SW development
 - Party!
 - Student Oppurtunities

Mathias Palmqvist

Work

- Senior Software Engineer, ARM ~5 years GPU driver, EGL on Android/X11, Multimedia.
- Previously at Sony Ericsson 7 years Android Graphics Integration.

Education

LTH, M.S.EE (e98). Fourth year at U.C. San Diego.
 Hardware and graphics main focus.

Interests

- Game Development(often non-graphics related)
- Real-time techniques with mobile focus

Personal

- Married to California girl from UCSD since 13 years
- Two children, 5 and 2. Aiden and Avery.

Midgard GPU Architecture

- AMBA Advanced Microcontroller Bus Architecture
- AXI AMBA Advanced eXtensible Interface
- APB AMBA Advanced Peripherial Bus
- ACE AMBA AXI Coherency Extensions
- GPU Graphics Processing Unit
- VPU Video Processing Unit
- DPU Display Processing Unit
- ISA Instruction Set Architecture
- SIMD Single Instruction Multiple Data

Midgard Architecture Overview

- Tile-based, Unified Shading Architecture
- Latest Midgard GPU is T880
- Maximum of 16 shader cores
- Tile size 16x16 (4x4-32x32 internally)
- GLES 3.2, Vulkan 1.0, CL 1.2, DX FLI1_2
- MSAA 4x, 8x, 16x
- T880 in Samsung GS7 and Huawei P9
- First product T604 in 2011q4
 - SoC: Samsung Exynos 5250
 - Products: Nexus I0, Samsung Chromebook

ARM [®] Mali [™] -T880 GPU							
Inter-Core Task Management							
SC	SC	SC	SC	SC	SC	SC	SC
SC	SC	SC	SC	SC	SC	SC	SC
Advanced Tiling Unit							
Memory Management Unit							
L2 Cache			L2 Cache				
AMBA [®] 4 ACE-Lite			AMBA®4 ACE-Lite				

GPU top level

Simplified Application-Driver Interaction

Driver building GPU resource structures

Арр	Driver	Tex Structure	Shader Structure		
glTexImageX()	Build Texture structure	Format, Dimensions Data Pointer	ProgramPointer		
glShaderX()	Build Shader structure	Buffer Structure Format, Dimensions Data Pointer	VertexJob I		
glBufferX()	Build Vertex/Index buffer structures	Shader2 Structure	St VertexJob2 Bu Structure In Sh Buffer Pointer		
glDraw() glShaderX() glDraw() 	Build Vertex Job Structure Link with vertex/index/shader structures	ProgramPointer FragmentJob Structure	Index Pointer Shader Pointer		
eglSwapBuffers()	Build Fragment Job Structure Link with FB and last Vertex Job	FrameBuffer Pointer Last Job Pointer			

GPU hardware job types

Vertex Job(V)	Vertex shader running on a set of vertices		
Tiler Job(T)	Tiling Unit (Fixed Function) work to split transformed primitives into affected tiles		
Fragment Job(F)	Single render target job running over all tiles		
Job Chain	A chain of jobs		
Job Chain I	Job Chain 2		

GPU job progression

Tile-based Renderer Data Flow

GPU Software Interface

Unified Shader Core

Shader Core: Vertex Work

Tiling Unit

- Hierarchy Level 0 16x16 tile bins
- Hierarchy Level I 32x32 tile bins
- Hierarchy Level 2 64x64 tile bins

Tiler's goal

Find out what tiles are covered by a primtive. Update tile structure with that info.

Assumptions

Small primitive -> Affect few tiles -> Use low hierarchy level -> Save read bandwidth

Large primitive -> Affect many tiles -> Use high hierarchy level -> Save write bandwidth

Heuristic approach

Determine what is best given distribution

Shader Core: Fragment Work

Shader Core: Tripipe details

- SIMD processing core that executes instructions from the Midgard ISA
- 3 types of pipes, but 5 total
 - 3 Arithmetic
 - I Load/Store
 - I Texture
- I28-bit operands, float or integer
 - 2xFP64, 4xFP32, 8xFP16
- Up to 256 active threads at the same time

Power Consumption and Bandwidth Reduction

Power Consumption

- Power comparision
 - Phone SoC I-3W
 - Tablet ~10W
 - Desktop Gfx card ~100-200W
- Constraints
 - Battery life time & heat dissapation
- Static and Dynamic power consumption
 - Static power. Related to technology and area. Improved through power management(gating)
 - Dynamic power. Heavily tied to use case. Responsability of designer.

Performance Density

FPS/mm^2. Smaller Area and less dynamic power -> possibly more cores

Approximate GPU power consumption distribution

Reduce Overdraw: Forward Pixel Kill

Insert small FIFO for 2x2 quads after EarlyZ but before entering tripipe.

Reject quads "in front" before they reach expensive tripipe execution

Transaction Elimination

- Signature/Hash calculated of color tilebuffer before write-out and saved.
- If it matches previous signature, write-out is skipped saving bandwidth.

Typical GPU has to write out all tiles Green tile-overlay shows tiles are not changing

©ARM 2016

22

ARM Framebuffer Compression/AFBC

- Real-time, lossless, small-area framebuffer compression technology
- Used on both external(window) and internal(FBO) buffers for GPU
- Formats: RGB/YUV (including 10-bit), depth/stencil

EXT_shader_pixel_local_storage

- Bandwidth Efficient Deferred Shading
- Define G-Buffer in Pixel Local Storage space(in tile memory)

G-Buffer initialization

__pixel_local_outEXT FragData
{
 layout(rgba8) highp vec4 Color;
 layout(rg16f) highp vec2 NormalXY;
 layout(rg16f) highp vec2 NormalZ_LightingB;
 layout(rg16f) highp vec2 LightingRG;
} gbuf;
void main()

```
gbuf.Color = calcDiffuseColor();
vec3 normal = calcNormal();
gbuf.NormalXY = normal.xy;
gbuf.NormalZ_LightingB.x = normal.z;
```

Lighting accumulation

___pixel_localEXT FragData

layout(rgba8) highp vec4 Color; layout(rg16f) highp vec2 NormalXY; layout(rg16f) highp vec2 NormalZ_LightingB; layout(rg16f) highp vec2 LightingRG; } gbuf;

void main()

{

Final shading

__pixel_local_inEXT FragData
{
 layout(rgba8) highp vec4 Color;
 layout(rg16f) highp vec2 NormalXY;
 layout(rg16f) highp vec2 NormalZ_LightingB;
 layout(rg16f) highp vec2 LightingRG;
} gbuf;

out highp vec4 fragColor;

void main()

{

gbuf.NormalZ_LightingB.y);

ARM Lund

ARM Lund GPU teams

- Hardware design/verification 15 (Fragment front/back-end)
- GPU Modelling 17
- Graphics/Backend Compiler team 16
- HW/SW regression testing 10
- Multimedia(GPU+VPU+DPU) development+regression 4

ARM Lund total ~100. Remaining are Video IP development.

Cambridge/Trondheim major GPU development sites

GPU HW Development

- HDL: Verilog + System Verilog
- git/gerrit
- Cluster based RTL simulation framework
- HW Engineers usually with low-spec desktop/laptop.
 - Everything runs on massive CPU clusters in Cambridge

GPU SW Development

- Sw tools: git/gerrit/svn, scons(DDK configuration), codecollaborator, JIRA
- GPU DDK release cycle: scrum-based. Release every iteration.
 - Iteration: ~2 months
 - Sprints: 2 weeks. 4 sprints/iteration
- Regression Server Test Framework: Internal
 - Handles FPGA board flashing, driver building, board allocation and test execution, automatic bug filing with git bisect
- Hardware platforms
 - ARM Juno/VersatileExpress + single/multiple FPGA tiles
 - Silicon development platforms with Mali
 - Mali GPU Model (bit accurate, close to cycle accurate)

ARM Lund Open-House Event TONIGHT(6/12)

Where

Tuesday December 6:th @17.15 Emdalavägen 6, 4:th floor

What

- Food/Drinks/Snacks
- Lund Team "stations". Talk to a hw designer or compiler engineer
- Graphics & Video HW/SW presentations
- Demos
- Mingle

ARM Lund Student opportunities

- Graduate job offerings apply through www.arm.com/careers
- Internship (part/full time) apply through www.arm.com/careers
- Master thesis work see adds on hand outs, apply to <u>student-se@arm.com</u>

 If you have any questions or specific proposals on how to engage with ARM, just drop an email to <u>student-se@arm.com</u>

ARM

The trademarks featured in this presentation are registered and/or unregistered trademarks of ARM Limited (or its subsidiaries) in the EU and/or elsewhere. All rights reserved. All other marks featured may be trademarks of their respective owners.

Copyright © 2016 ARM Limited

© ARM 2016

Midgard Shader Core: Fragment Frontend

- Polygon List Reader / Triangle Setup
 - Loads primitives from the tiler polygon list; ~13 cycles a triangle
- Depth-bounds and Hierarchical-Z S Testing
 - Conservative fast cull of primitives based on line equations
- Rasterizer
 - Generate 2x2 fragment quads with per per-fragment coverage mask
- Early ZS Testing
 - Cull quads based on ZS values, if possible
 - Those which pass ZS may cull old quads in FPK Queue
- FPK Queue
 - Buffer with 128 quads; Freya supports priority quad issue into FTC
- Fragment Thread Creator
 - Spawn a quad as four fragment threads over four cycles

Midgard Shader Core: Fragment Backend

- Late ZS Testing
 - Resolve any outstanding ZS tests we couldn't do early
- Blending
 - Blend up to 4 samples per clock for subset of blend equations
 - 4x MSAA needs 1 cycle, 8x needs 2 cycles, and 16x needs 4 cycles
 - Complex blend operations implemented using blend shaders
- Tile Memory
 - Storage for color and depth+stencil data
 - Mali-T760 onwards provide flexible allocation for MRT and/or MSAA
- Tile Writeback
 - Requires one cycle per output pixel
 - Provides the CRC generation for transaction elimination
 - AFBC compression and YUV writeback supported (Mali-T760 onwards)

Smart Composition

- Selectively update parts of a frame
- Khronos EGL extensions
 - KHR_partial_update
 - EXT_buffer_age
- Producer can utilize age of existing backbuffer contents to draw frame with multiple bounding boxes
- Similar to TE, but here we wont even write to the tilebuffer